Skip to main content

Compactness of Linearized Kinetic Operators

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations III

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 162))

Abstract

This article reviews various results on the compactness of the linearized Boltzmann operator and of its generalization to mixtures of non-reactive monatomic gases.

This work was partially funded by the French ANR-13-BS01-0004 project Kibord and by the French ANR-14-ACHN-0030-01 project Kimega.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boltzmann, L.: Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte Akad. Wiss. 66, 275–370 (1873)

    Google Scholar 

  2. Boltzmann, L.: Lectures on Gas Theory. Translated by Stephen G. Brush. University of California Press, Berkeley (1964)

    Google Scholar 

  3. Bothe, D.: On the Maxwell-Stefan approach to multicomponent diffusion. In: Parabolic problems, Progress in Nonlinear Differential Equations Applications, vol. 80, pp. 81–93. Birkhäuser/Springer Basel AG, Basel (2011)

    Google Scholar 

  4. Boudin, L., Grec, B., Pavić, M., Salvarani, F.: Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinet. Relat. Models 6(1), 137–157 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boudin, L., Grec, B., Salvarani, F.: A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1427–1440 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boudin, L., Grec, B., Salvarani, F.: The Maxwell-Stefan diffusion limit for a kinetic model of mixtures. Acta Appl. Math. 136, 79–90 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgat, J.-F., Desvillettes, L., Le Tallec, P., Perthame, B.: Microreversible collisions for polyatomic gases and Boltzmann’s theorem. European J. Mech. B Fluids 13(2), 237–254 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Caflisch, R.E.: The Boltzmann equation with a soft potential. I. Linear, spatially-homogeneous. Comm. Math. Phys. 74(1), 71–95 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caflisch, R.E.: The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic. Comm. Math. Phys. 74(2), 97–109 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carleman, T.: Problèmes mathématiques dans la théorie cinétique des gaz. Publlisher Science Institute Mittag-Leffler. 2. Almqvist & Wiksells Boktryckeri Ab, Uppsala (1957)

    Google Scholar 

  11. Cercignani, C.: The Boltzmann equation and its applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    Google Scholar 

  12. Cercignani, C., Illner, R., Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, vol. 106. Springer, New York (1994)

    Google Scholar 

  13. Daus, E.S., Jüngel, A., Mouhot, C., Zamponi, N.: Hypocoercivity for a linearized multi-species Boltzmann system. ArXiv e-prints, April 2015

    Google Scholar 

  14. Desvillettes, L.: Sur un modèle de type Borgnakke-Larsen conduisant à des lois d’énergie non linéaires en température pour les gaz parfaits polyatomiques. Ann. Fac. Sci. Toulouse Math. (6), 6(2):257–262 (1997)

    Google Scholar 

  15. Desvillettes, L., Monaco, R., Salvarani, F.: A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions. Eur. J. Mech. B Fluids 24(2), 219–236 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duncan, J.B., Toor, H.L.: An experimental study of three component gas diffusion. AIChE J. 8(1), 38–41 (1962)

    Article  Google Scholar 

  17. Glassey, R.T.: The Cauchy Problem in Kinetic Theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1996)

    Book  MATH  Google Scholar 

  18. Golse, F., Poupaud, F.: Stationary solutions of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11(4), 483–502 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, pp. 205–294. Springer, Berlin (1958)

    Google Scholar 

  20. Grad, H.: Asymptotic theory of the Boltzmann equation. II. In: Rarefied Gas Dynamics (Proc. 3rd Internat. Sympos., Palais de l’UNESCO, Paris, 1962), vol. I, pp. 26–59. Academic Press, New York, (1963)

    Google Scholar 

  21. Guo, Y.: Classical solutions to the Boltzmann equation for molecules with an angular cutoff. Arch. Ration. Mech. Anal. 169(4), 305–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hecke, E.: Über die Integralgleichung der kinetischen Gastheorie. Math. Z. 12(1), 274–286 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hilbert, D.: Begründung der kinetischen Gastheorie. Math. Ann. 72(4), 562–577 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hutridurga, H., Salvarani, F.: On the Maxwell-Stefan diffusion limit for a mixture of monatomic gases. ArXiv e-prints (2015)

    Google Scholar 

  25. Levermore, C.D., Sun, W.: Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinet. Relat. Models 3(2), 335–351 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Maxwell, J.C.: On the dynamical theory of gases. Phil. Trans. R. Soc. 157, 49–88 (1866)

    Article  Google Scholar 

  27. Mouhot, C., Strain, R.M.: Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff. J. Math. Pures Appl. (9), 87(5), 515–535 (2007)

    Google Scholar 

  28. Pao, Y.P.: Boltzmann collision operator with inverse-power intermolecular potentials. I, II. Comm. Pure Appl. Math. 27, 407–428; ibid. 27, 559–581 (1974)

    Google Scholar 

  29. Stefan, J.: Ueber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen. Akad. Wiss. Wien 63, 63–124 (1871)

    Google Scholar 

  30. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)

    Google Scholar 

Download references

Acknowledgments

The authors thank Bérénice Grec for her careful proof-reading and the fruitful discussions about the compactness of the linearized Boltzmann operator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Salvarani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Boudin, L., Salvarani, F. (2016). Compactness of Linearized Kinetic Operators. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations III. Springer Proceedings in Mathematics & Statistics, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-319-32144-8_4

Download citation

Publish with us

Policies and ethics