Skip to main content

Duality Relations for the Periodic ASEP Conditioned on a Low Current

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations III

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 162))

Abstract

We consider the asymmetric simple exclusion process (ASEP) on a finite lattice with periodic boundary conditions, conditioned to carry an atypically low current. For an infinite discrete set of currents, parametrized by the driving strength \(s_K\), \(K \ge 1\), we prove duality relations which arise from the quantum algebra \(U_q[\mathfrak {gl}(2)]\) symmetry of the generator of the process with reflecting boundary conditions. Using these duality relations we prove on microscopic level a travelling-wave property of the conditioned process for a family of shock-antishock measures for \(N>K\) particles: If the initial measure is a member of this family with K microscopic shocks at positions \((x_1,\dots ,x_K)\), then the measure at any time \(t>0\) of the process with driving strength \(s_K\) is a convex combination of such measures with shocks at positions \((y_1,\dots ,y_K)\), which can be expressed in terms of K-particle transition probabilities of the conditioned ASEP with driving strength \(s_N\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We mention that the deep link between duality of Markov processes and symmetries of its generator, first noted in [32], that we exploit here was given a systematic abstract treatment in [21]. More recently many concrete symmetry-based dualities for interacting particle systems were derived using this approach [7, 10, 1215, 17, 25, 29].

  2. 2.

    When the summation is over \(\varOmega =\mathbb {S}^L\) we shall usually omit the set \(\mathbb {S}^L\) under the summation symbol and simply write \(\sum _{\eta }\).

  3. 3.

    This is equivalent to Eq. (2.14) in [33], which, however, has a sign error and should read \(H^T = V^{-2} H V^2\).

  4. 4.

    Notice a sign error in front of the term \(2k_i\) in Eq. (3.12) of [33] and pay attention to the different convention \(q \leftrightarrow q^{-1}\).

  5. 5.

    Eqs. (2.62a) and (2.62b) of [30] have some sign errors which are corrected in Proposition (1).

References

  1. Alcaraz, F.C., Rittenberg, V.: Reaction-diffusion processes as physical realizations of Hecke algebras. Phys. Lett. B 314, 377–380 (1993)

    Article  Google Scholar 

  2. Andrews, G.E.: The Theory of Partitions. Encyclopedia of Mathematics and its Applications, vol. 2. Addison Wesley, London (1976)

    MATH  Google Scholar 

  3. Balázs, M., Farkas, G., Kovács, P., Rákos, A.: Random walk of second class particles in product shock measures. J. Stat. Phys. 139(2), 252–279 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belitsky, V., Schütz, G.M.: Diffusion and scattering of shocks in the partially asymmetric simple exclusion process. Electron. J. Probab. 7, paper 11, 1–21 (2002)

    Google Scholar 

  5. Belitsky, V., Schütz, G.M.: Microscopic structure of shocks and antishocks in the ASEP conditioned on low current. J. Stat. Phys. 152, 93–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belitsky, V., Schütz, G.M.: Quantum algebra symmetry of the ASEP with second-class particles. J. Stat. Phys. 161, 821–842 (2015)

    Google Scholar 

  7. Belitsky, V., Schütz, G.M.: Self-duality for the two-component asymmetric simple exclusion process. J. Math. Phys. 56, 083302 (2015)

    Google Scholar 

  8. Bertini, L., De Sole, A., Gabrielli, D., Jona Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bodineau, T., Derrida, B.: Distribution of current in non-equilibrium diffusive systems and phase transitions. Phys. Rev. E 72, 066110 (2005)

    Article  MathSciNet  Google Scholar 

  10. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for Q-TASEP and ASEP. Ann. Probab. 42, 2314–2382 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burdík, Č., Havlíček, M., Vančura, A.: Irreducible highest weight representations of quantum groups \(U(gl(n,{\mathbb{C}}))\). Commun. Math. Phys. 148(2), 417–423 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Duality for stochastic models of transport. J. Stat. Phys. 152(4), 657–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carinci, G., Giardinà, Redig, F., and Sasamoto, T.: A generalized Asymmetric Exclusion Process with \(U_q({{\mathfrak{sl}}}_2)\) stochastic duality. Probab. Theory Relat. Fields (2015). doi:10.1007/s00440-015-0674-0

    Google Scholar 

  14. Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Dualities in population genetics: a fresh look with new dualities. Stoch. Process. Appl. 125(3), 941–969 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carinci, G., Giardinà, Redig, F., and Sasamoto, T.: Asymmetric stochastic transport models with \({\fancyscript {U}}_q({\mathfrak{su}} (1,1))\) symmetry (2015). arXiv:1507.01478

  16. Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Annales Henri Poincaré, 16(9), 2005–2057 (2015)

    Google Scholar 

  17. Corwin, I., and Petrov, L.: Stochastic higher spin vertex models on the line (2015). arXiv:1502.07374

    Google Scholar 

  18. Derrida, B., Lebowitz, J.L.: Exact large deviation function in the asymmetric exclusion process. Phys. Rev. Lett. 80(2), 209–213 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135(2), 217–239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35(3), 807–832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and Hidden Symmetries in Interacting Particle Systems. J. Stat. Phys. 135, 25–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harris, R.J., and Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech., P07020 (2007)

    Google Scholar 

  23. Jack, R.L., Sollich, P.: Large deviations and ensembles of trajectories in stochastic models. Prog. Theor. Phys. Supp. 184, 304–317 (2010)

    Article  MATH  Google Scholar 

  24. Jimbo, M.: A \(q\)-analogue of \(U({\mathfrak{gl}}(N + 1))\), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuan, J.: Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two, J. Phys. A: Math. Theor. 49(11), 115002 (2016)

    Google Scholar 

  26. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  27. Liggett, T.M.: Stochastic Interacting Systems: Contact Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  28. Lloyd P., Sudbury A., Donnelly P.: Quantum operators in classical probability theory: I. “Quantum spin” techniques and the exclusion model of diffusion. Stoch. Process. Appl. 61(2), 205–221 (1996)

    Google Scholar 

  29. Ohkubo, J.: Duality in interacting particle systems and boson representation. J. Stat. Phys. 139, 454–465 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theories through quantum groups. Nucl. Phys. B 330, 523–556 (1990)

    Article  MathSciNet  Google Scholar 

  31. Sandow, S., Schütz, G.: On \(U_q[SU(2)]\)-symmetric driven diffusion. Europhys. Lett. 26, 7–12 (1994)

    Article  MathSciNet  Google Scholar 

  32. Schütz, G., Sandow, S.: Non-abelian symmetries of stochastic processes: derivation of correlation functions for random vertex models and disordered interacting many-particle systems. Phys. Rev. E 49, 2726–2744 (1994)

    Article  Google Scholar 

  33. Schütz, G.M.: Duality relations for the asymmetric exclusion process. J. Stat. Phys. 86(5/6), 1265–1287 (1997)

    Article  MATH  Google Scholar 

  34. Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19, pp. 1–251. Academic Press, London (2001)

    Google Scholar 

  35. Schütz, G.M.: Conditioned stochastic particle systems and integrable quantum spin systems. In: Gonçalves, P., Soares, A.J. (eds.) From Particle Systems to Partial Differential Equations II. Springer Proceedings in Mathematics & Statistics, vol. 129. Springer, Switzerland (2015)

    Google Scholar 

  36. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sudbury, A., Lloyd, P.: Quantum operators in classical probability theory. II: the concept of duality in interacting particle systems. Ann. Probab. 23(4), 1816–1830 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

GMS thanks DFG and FAPESP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Schütz .

Editor information

Editors and Affiliations

Appendix

Appendix

We present some details of the proof of Proposition (1) which are not shown in [30] and from which Proposition (1) follows by the similarity transformation (33).

We define \(e_L(\cdot ,\cdot ,\cdot ) := h_{L,1}(\cdot ,\cdot ,\cdot )\), see (31). By explicit matrix multiplications one finds from the relations (25) for the bulk operators

$$\begin{aligned} S_k^\pm (q,\alpha ) e_L(\alpha ',q',\beta )= & {} e_L(\alpha ',q',\beta q^{-2}) S_k^\pm (q,\alpha ) \quad 2 \le k \le L-1 \end{aligned}$$
(131)
$$\begin{aligned} e_L(\alpha ',q',\beta ) S_k^\pm (q,\alpha )= & {} S_k^\pm (q,\alpha ) e_L(\alpha ',q',\beta q^{2}) \quad 2 \le k \le L-1 \end{aligned}$$
(132)

and for the boundary operators

$$\begin{aligned} S_1^+(q,\alpha ) e_L(\alpha ',q',\beta )= & {} q^{-1/2} \alpha ^{\frac{1}{2}(L-1)} \left[ (q')^{-1} \sigma ^+_1 \hat{\upsilon }_L - \alpha ' \beta \hat{\upsilon }_1 \sigma ^+_L \right] q^{-S^z}\qquad \end{aligned}$$
(133)
$$\begin{aligned} S_1^-(q,\alpha ) e_L(\alpha ',q',\beta )= & {} q^{1/2} \alpha ^{-\frac{1}{2}(L-1)} \left[ q' \sigma ^-_1 \hat{n}_L - (\alpha ' \beta )^{-1} \hat{n}_1 \sigma ^-_L \right] q^{-S^z}\quad \end{aligned}$$
(134)
$$\begin{aligned} S_L^+(q,\alpha ) e_L(\alpha ',q',\beta )= & {} q^{1/2} \alpha ^{-\frac{1}{2}(L-1)} \left[ q' \hat{\upsilon }_1 \sigma ^+_L - (\alpha ' \beta )^{-1} \sigma ^+_1 \hat{\upsilon }_L \right] q^{S^z}\quad \end{aligned}$$
(135)
$$\begin{aligned} S_L^-(q,\alpha ) e_L(\alpha ',q',\beta )= & {} q^{-1/2} \alpha ^{\frac{1}{2}(L-1)} \left[ (q')^{-1} \hat{n}_1 \sigma ^-_L - \alpha ' \beta \sigma ^-_1 \hat{n}_L \right] q^{S^z}\quad \end{aligned}$$
(136)

and

$$\begin{aligned} e_L(\alpha ',q',\beta ) S_1^+(q,\alpha )= & {} q^{-1/2} \alpha ^{\frac{1}{2}(L-1)} \left[ q' \sigma ^+_1 \hat{n}_L - \alpha ' \beta \hat{n}_1 \sigma ^+_L \right] q^{-S^z}\end{aligned}$$
(137)
$$\begin{aligned} e_L(\alpha ',q',\beta ) S_1^-(q,\alpha )= & {} q^{1/2} \alpha ^{-\frac{1}{2}(L-1)} \left[ (q')^{-1} \sigma ^-_1 \hat{\upsilon }_L - (\alpha ' \beta )^{-1} \hat{\upsilon }_1 \sigma ^-_L \right] q^{-S^z}\quad \quad \quad \quad \end{aligned}$$
(138)
$$\begin{aligned} e_L(\alpha ',q',\beta ) S_L^+(q,\alpha )= & {} q^{1/2} \alpha ^{-\frac{1}{2}(L-1)} \left[ (q')^{-1} \hat{n}_1 \sigma ^+_L - (\alpha ' \beta )^{-1} \sigma ^+_1 \hat{n}_L \right] q^{S^z}\quad \end{aligned}$$
(139)
$$\begin{aligned} e_L(\alpha ',q',\beta ) S_L^-(q,\alpha )= & {} q^{-1/2} \alpha ^{\frac{1}{2}(L-1)} \left[ q' \hat{\upsilon }_1 \sigma ^-_L - \alpha ' \beta \sigma ^-_1 \hat{\upsilon }_L \right] q^{S^z}. \end{aligned}$$
(140)

Consider now \(q=q'\) and \(\alpha =\alpha '\). From the quantum algebra symmetry and from the previous relations one obtains (omitting the \(q,\alpha \)-dependence)

$$\begin{aligned} S^\pm H(\beta ) - H(\beta ') S^\pm= & {} S^\pm e_L(\beta ) - e_L(\beta ') S^\pm \\= & {} \left[ e_L(q^{-2}\beta ) - e_L(\beta ') \right] \sum _{k=2}^{L-1} S^\pm _k \nonumber \end{aligned}$$
(141)
$$\begin{aligned}&+ \left( S^\pm _1 + S^\pm _L \right) e_L(\beta ) - e_L(\beta ') \left( S^\pm _1 + S^\pm _L \right) . \end{aligned}$$
(142)

Observe that

$$\begin{aligned}&S_1^+ = q^{-1/2} \alpha ^{\frac{1}{2}(L-1)} \sigma ^+_1 q^{-S^z}, \quad S_1^- = q^{1/2} \alpha ^{-\frac{1}{2}(L-1)} \sigma ^-_1 q^{-S^z}, \end{aligned}$$
(143)
$$\begin{aligned}&S_L^+ = q^{1/2} \alpha ^{-\frac{1}{2}(L-1)} \sigma ^+_L q^{S^z}, \quad S_L^- = q^{-1/2} \alpha ^{\frac{1}{2}(L-1)} \sigma ^-_L q^{S^z} \end{aligned}$$
(144)

and the auxiliary relations

$$\begin{aligned} \sigma ^+_1 e_L(\beta )= & {} q^{-1} \sigma ^+_1 \hat{\upsilon }_L - \alpha \beta \hat{\upsilon }_1 \sigma ^+_L, \end{aligned}$$
(145)
$$\begin{aligned} e_L(\beta ) \sigma ^+_1= & {} q \sigma ^+_1 \hat{n}_L - \alpha \beta \hat{n}_1 \sigma ^+_L \end{aligned}$$
(146)
$$\begin{aligned} \sigma ^+_L e_L(\beta )= & {} q \hat{\upsilon }_1 \sigma ^+_L - (\alpha \beta )^{-1} \sigma ^+_1 \hat{\upsilon }_L, \end{aligned}$$
(147)
$$\begin{aligned} e_L(\beta ) \sigma ^+_L= & {} q^{-1} \hat{n}_1 \sigma ^+_L - (\alpha \beta )^{-1} \sigma ^+_1 \hat{n}_L, \end{aligned}$$
(148)

and

$$\begin{aligned} \sigma ^-_1 e_L(\beta )= & {} q \sigma ^-_1 \hat{n}_L - (\alpha \beta )^{-1} \hat{n}_1 \sigma ^-_L, \end{aligned}$$
(149)
$$\begin{aligned} e_L(\beta ) \sigma ^-_1= & {} q^{-1} \sigma ^-_1 \hat{\upsilon }_L - (\alpha \beta )^{-1} \hat{\upsilon }_1 \sigma ^-_L \end{aligned}$$
(150)
$$\begin{aligned} \sigma ^-_L e_L(\beta )= & {} q^{-1} \hat{n}_1 \sigma ^-_L - \alpha \beta \sigma ^-_1 \hat{n}_L, \end{aligned}$$
(151)
$$\begin{aligned} e_L(\beta ) \sigma ^-_L= & {} q \hat{\upsilon }_1 \sigma ^-_L - \alpha \beta \sigma ^-_1 \hat{\upsilon }_L. \end{aligned}$$
(152)

Thus one obtains

$$\begin{aligned}&\left( S^+_1 + S^+_L \right) e_L(\beta ) - e_L(\beta ') \left( S^+_1 + S^+_L \right) \nonumber \\&= A^+(\beta ,\beta ') \beta ^{1/2} \alpha ^{L/2} q^{-S^z-1} + B^+(\beta ,\beta ') \beta ^{-1/2} \alpha ^{-L/2} q^{S^z+1} \end{aligned}$$
(153)

with

$$\begin{aligned} A^+(\beta ,\beta ')= & {} \frac{q^{1/2}}{(\alpha \beta )^{1/2}}\sigma ^+_1 \left[ q^{-1} \hat{\upsilon }_L - q \hat{n}_L\right] - \frac{(\alpha \beta )^{1/2}}{q^{1/2}} \sigma ^+_L \left[ q \hat{\upsilon }_1 - q \frac{\beta '}{\beta }\hat{n}_1\right] \end{aligned}$$
(154)
$$\begin{aligned} B^+(\beta ,\beta ')= & {} \frac{q^{1/2}}{(\alpha \beta )^{1/2}}\sigma ^+_1 \left[ q^{-1} \frac{\beta }{\beta '}\hat{n}_L - q^{-1} \hat{\upsilon }_L\right] - \frac{(\alpha \beta )^{1/2}}{q^{1/2}} \sigma ^+_L \left[ q^{-1} \hat{n}_1 - q \hat{\upsilon }_1\right] \quad \quad \quad \quad \quad \end{aligned}$$
(155)

and

$$\begin{aligned}&\left( S^-_1 + S^-_L \right) e_L(\beta ) - e_L(\beta ') \left( S^-_1 + S^-_L \right) \nonumber \\&= A^-(\beta ,\beta ') \beta ^{-1/2} \alpha ^{-L/2} q^{-S^z+1} + B^-(\beta ,\beta ') \beta ^{1/2} \alpha ^{L/2} q^{S^z-1} \end{aligned}$$
(156)

with

$$\begin{aligned} A^-(\beta ,\beta ')= & {} \frac{(\alpha \beta )^{1/2}}{q^{1/2}}\sigma ^-_1 \left[ q \hat{n}_L - q^{-1} \hat{\upsilon }_L\right] - \frac{q^{1/2}}{(\alpha \beta )^{1/2}} \sigma ^-_L \left[ q^{-1} \hat{n}_1 - q^{-1} \frac{\beta }{\beta '}\hat{\upsilon }_1\right] \quad \quad \quad \quad \quad \end{aligned}$$
(157)
$$\begin{aligned} B^-(\beta ,\beta ')= & {} \frac{(\alpha \beta )^{1/2}}{q^{1/2}}\sigma ^-_1 \left[ q \frac{\beta '}{\beta }\hat{\upsilon }_L - q \hat{n}_L\right] - \frac{q^{1/2}}{(\alpha \beta )^{1/2}} \sigma ^-_L \left[ q \hat{\upsilon }_1 - q^{-1} \hat{n}_1\right] . \end{aligned}$$
(158)

With the choice \(\beta ' = q^{-2} \beta \) (142) reduces to

$$\begin{aligned} S^\pm H(\beta ) - H(q^{-2} \beta ) S^\pm = \left( S^\pm _1 + S^\pm _L \right) e_L(\beta ) - e_L(q^{-2}\beta ) \left( S^\pm _1 + S^\pm _L \right) . \end{aligned}$$
(159)

For \(S^+\) the r.h.s. reduces to

$$\begin{aligned}&\left\{ \frac{q^{1/2}}{(\alpha \beta )^{1/2}}\sigma ^+_1 \left[ q^{-1} \hat{\upsilon }_L - q \hat{n}_L\right] - \frac{(\alpha \beta )^{1/2}}{q^{1/2}} \sigma ^+_L \left[ q \hat{\upsilon }_1 - q^{-1} \hat{n}_1\right] \right\} \nonumber \\&\quad \times \left[ \beta ^{1/2} \alpha ^{L/2} q^{-S^z-1} - \beta ^{-1/2} \alpha ^{-L/2} q^{S^z+1} \right] \nonumber \end{aligned}$$

With (143), (144) one thus arrives at

$$\begin{aligned} S^+ H(\beta ) - H(q^{-2} \beta ) S^+= & {} \left[ q^{-1} \hat{\upsilon }_L - q \hat{n}_L\right] S^+_1 \left[ 1-\beta ^{-1}\alpha ^{-L} q^{2S^z+2} \right] \quad \nonumber \\&+ \left[ q \hat{\upsilon }_1 - q^{-1} \hat{n}_1\right] S^+_L \left[ 1-\beta \alpha ^{L} q^{-2S^z-2} \right] . \end{aligned}$$
(160)

Notice that the action of the pseudo commutator on states with particle number satisfying

$$\begin{aligned} q^{L-2N+2} = \beta \alpha ^L \end{aligned}$$
(161)

vanishes.

Similarly one obtains for \(S^-\) the r.h.s. of (159)

$$\begin{aligned}&\left\{ \frac{(\alpha \beta )^{1/2}}{q^{1/2}}\sigma ^-_1 \left[ q^{-1} \hat{\upsilon }_L - q \hat{n}_L\right] - \frac{q^{1/2}}{(\alpha \beta )^{1/2}} \sigma ^-_L \left[ q \hat{\upsilon }_1 - q^{-1} \hat{n}_1\right] \right\} \nonumber \\&\quad \times \left[ \beta ^{1/2} \alpha ^{L/2} q^{S^z-1} - \beta ^{-1/2} \alpha ^{-L/2} q^{-S^z+1} \right] \nonumber \end{aligned}$$

which yields

$$\begin{aligned} S^- H(\beta ) - H(q^{-2} \beta ) S^-= & {} -\left[ q^{-1} \hat{\upsilon }_L - q \hat{n}_L\right] S^-_1 \left[ 1-\beta \alpha ^{L} q^{2S^z-2} \right] \nonumber \\&- \left[ q \hat{\upsilon }_1 - q^{-1} \hat{n}_1\right] S^-_L \left[ 1-\beta ^{-1} \alpha ^{-L} q^{-2S^z+2} \right] .\quad \quad \quad \end{aligned}$$
(162)

Notice that the action of the pseudo commutator on states with particle number satisfying

$$\begin{aligned} q^{-L+2N+2} = \beta \alpha ^L \end{aligned}$$
(163)

vanishes.

In compact form (159) can thus be written

$$\begin{aligned} S^\pm H(\beta ) - H(q^{-2} \beta ) S^\pm= & {} \pm \left[ q^{-1} \hat{\upsilon }_L - q \hat{n}_L\right] S^\pm _1 \left[ 1-\beta ^{\mp 1}\alpha ^{\mp L} q^{2S^z\pm 2} \right] \nonumber \\&\pm \left[ q \hat{\upsilon }_1 - q^{-1} \hat{n}_1\right] S^\pm _L \left[ 1-\beta ^{\pm 1} \alpha ^{\pm L} q^{-2S^z\mp 2} \right] .\quad \quad \quad \end{aligned}$$
(164)

One can iterate. E.g. for \((S^-)^2\) one obtains

$$\begin{aligned}&(S^-)^2 H(\beta ) - H(q^{-4} \beta ) (S^-)^2 \nonumber \\&\quad = (1+q^{-2}) \left[ q \hat{n}_L - q^{-1} \hat{\upsilon }_L\right] S^-_1 \left( \sum _{k=2}^{L-1} S^-_k\right) \left[ 1-\beta \alpha ^{ L} q^{2S^z -4} \right] \nonumber \\&\quad + (1+q^{-2})\left[ q^{-1} \hat{n}_1 - q \hat{\upsilon }_1\right] \left( \sum _{k=2}^{L-1} S^-_k\right) S^-_L \left[ 1-\beta ^{- 1} \alpha ^{- L} q^{-2S^z+4} \right] .\quad \end{aligned}$$
(165)

Iterating further as in [30] one arrives at Proposition 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schütz, G.M. (2016). Duality Relations for the Periodic ASEP Conditioned on a Low Current. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations III. Springer Proceedings in Mathematics & Statistics, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-319-32144-8_16

Download citation

Publish with us

Policies and ethics