Skip to main content

Convergence of Diffusion-Drift Many Particle Systems in Probability Under a Sobolev Norm

  • Conference paper
  • First Online:
From Particle Systems to Partial Differential Equations III

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 162))

  • 880 Accesses

Abstract

In this paper we develop a new martingale method to show the convergence of the regularized empirical measure of many particle systems in probability under a Sobolev norm to the corresponding mean field PDE. Our method works well for the simple case of Fokker Planck equation and we can estimate a lower bound of the rate of convergence. This method can be generalized to more complicated systems with interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolley, F., Guillin, A., Villani, C.: Quantitative concentration inequalities for empirical measures on non-compact spaces. Prob. Theory Rel. Fields 137, 541–593 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  3. Cottet, G.H., Koumoutsakos, P.: Vortex Methods: Theory and Practice, Cambridge University Press (2000)

    Google Scholar 

  4. Durrett, R.T.: Stochastic Calculus: A Practical Introduction, CRC Press (1996)

    Google Scholar 

  5. Ethier, S.N., Kurtz, R.G.: Markov Processes: Characterization and Convergence. Wiley (2005)

    Google Scholar 

  6. Fournier, N., Hauray, M., Mischler, S.: Propagation of chaos for the 2D viscous vortex model. J. Eur. Math. Soc. 16, 1425–1466 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goodman, J.: Convergence of the random vortex method. Comm. Pure Appl. Math. 40, 189–220 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Federer, H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  9. Koumoutsakos, P., Leonard, A.: High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 96, 1–38 (1995)

    Article  MATH  Google Scholar 

  10. Liu, J.-G., Yang, R.: A random particle blob method for the Keller-Segel equation and convergence analysis. Math. Comp., to appear

    Google Scholar 

  11. Long, D.G.: Convergence of the random vortex method in two dimensions. J. Amer. Math. Soc 1, 779–804 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Marchioro, C., Pulvirenti, M.: Hydrodynamics in two dimensions and vortex theory. Commun. Math. Phys. 84, 483–504 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. McKean, H.P.: Propagation of chaos for a class of non-linear parabolic equation. In: Lecture Series in Differential Equations, session 7, pp. 177–194, Catholic University (1967)

    Google Scholar 

  14. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer (1991)

    Google Scholar 

  15. Osada, H.: Propagation of chaos for the two dimensional Navier-Stokes equation. In: Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985), pp. 303–334. Academic Press, Boston, MA (1987)

    Google Scholar 

  16. Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, 183–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sznitman, A.-S.: Topics in propagation of chaos, In: Ecole d’Eté de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Mathematics, vol. 1464. Springer, Berlin (1991)

    Google Scholar 

Download references

Acknowledgments

The research was partially supported by KI-Net NSF RNMS Grant No. 1107291, and NSF DMS Grant No. 1514826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, JG., Zhang, Y. (2016). Convergence of Diffusion-Drift Many Particle Systems in Probability Under a Sobolev Norm. In: Gonçalves, P., Soares, A. (eds) From Particle Systems to Partial Differential Equations III. Springer Proceedings in Mathematics & Statistics, vol 162. Springer, Cham. https://doi.org/10.1007/978-3-319-32144-8_10

Download citation

Publish with us

Policies and ethics