Skip to main content

Substance Use in Adolescence

  • Chapter
  • First Online:
Puberty

Abstract

Adolescent-specific differences in psychosocial factors, behavioral responses, and neurobiological alterations influence the initiation and progression of substance use during adolescence. Adolescent substance use is characterized by excessive intake and a higher prevalence of drug use compared to adulthood. Additionally, exposure to drugs during this developmental period increases the likelihood of developing a future substance use disorder. In this chapter, we review the age-dependent differences in the short- and long-term consequences of three of the more commonly used drugs during adolescence: nicotine, alcohol, and marijuana. Although drug experimentation is relatively common during adolescence, permanent changes occur that make adolescence a period of enhanced vulnerability to substance use. These age-specific consequences are important to recognize and consider in the treatment of substance use that was initiated during adolescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston LD, O’Malley PM, Miech RA, Bachman JG, Schulenberg JE. Monitoring the future national survey results on drug use, 1975–2014: overview, key findings on adolescent drug use. Ann Arbor: Institute for Social Research, The University of Michigan; 2015.

    Google Scholar 

  2. Substance Abuse and Mental Health Services Administration. Results from the 2013 National Survey on Drug Use and Health: summary of national findings, NSDUH series H-48, HHS publication no. (SMA) 14–4863. Rockville: Substance Abuse and Mental Health Services Administration; 2014.

    Google Scholar 

  3. Grant BF. The impact of a family history of alcoholism on the relationship between age at onset of alcohol use and DSM-IV alcohol dependence: results from the National Longitudinal Alcohol Epidemiologic Survey. Alcohol Health Res World. 1998;22(2):144–7.

    CAS  PubMed  Google Scholar 

  4. Bidwell LC, Knopik VS, Audrain-McGovern J, Glynn TR, Spillane NS, Ray LA, et al. Novelty seeking as a phenotypic marker of adolescent substance use. Subst Abuse. 2015;9 Suppl 1:1–10.

    PubMed  PubMed Central  Google Scholar 

  5. Steinberg L, Albert D, Cauffman E, Banich M, Graham S, Woolard J. Age differences in sensation seeking and impulsivity as indexed by behavior and self-report: evidence for a dual systems model. Dev Psychol. 2008;44(6):1764–78.

    Article  PubMed  Google Scholar 

  6. Crone EA, Bullens L, van der Plas EA, Kijkuit EJ, Zelazo PD. Developmental changes and individual differences in risk and perspective taking in adolescence. Dev Psychopathol. 2008;20(4):1213–29.

    Article  PubMed  Google Scholar 

  7. Macrì S, Adriani W, Chiarotti F, Laviola G. Risk taking during exploration of a plus-maze is greater in adolescent than in juvenile or adult mice. Anim Behav. 2002;64(4):541–6.

    Article  Google Scholar 

  8. Masten AS, Faden VB, Zucker RA, Spear LP. A developmental perspective on underage alcohol use. Alcohol Res Health. 2009;32(1):3–15.

    PubMed  PubMed Central  Google Scholar 

  9. Levin ED, Slade S, Wells C, Cauley M, Petro A, Vendittelli A, et al. Threshold of adulthood for the onset of nicotine self-administration in male and female rats. Behav Brain Res. 2011;225(2):473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Natividad LA, Torres OV, Friedman TC, O’Dell LE. Adolescence is a period of development characterized by short- and long-term vulnerability to the rewarding effects of nicotine and reduced sensitivity to the anorectic effects of this drug. Behav Brain Res. 2013;257:275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doremus TL, Brunell SC, Rajendran P, Spear LP. Factors influencing elevated ethanol consumption in adolescent relative to adult rats. Alcohol Clin Exp Res. 2005;29(10):1796–808.

    Article  PubMed  Google Scholar 

  12. Schramm-Sapyta NL, Walker QD, Caster JM, Levin ED, Kuhn CM. Are adolescents more vulnerable to drug addiction than adults? Evidence from animal models. Psychopharmacology (Berl). 2009;206(1):1–21.

    Article  CAS  Google Scholar 

  13. Adriani W, Deroche-Gamonet V, Le Moal M, Laviola G, Piazza PV. Preexposure during or following adolescence differently affects nicotine-rewarding properties in adult rats. Psychopharmacology (Berl). 2006;184(3–4):382–90.

    Article  CAS  Google Scholar 

  14. de la Peña JB, Ahsan HM, Botanas CJ, Sohn A, Yu GY, Cheong JH. Adolescent nicotine or cigarette smoke exposure changes subsequent response to nicotine conditioned place preference and self-administration. Behav Brain Res. 2014;272:156–64.

    Article  PubMed  Google Scholar 

  15. de la Peña JB, Ahsan HM, Tampus R, Botanas CJ, dela Peña IJ, Kim HJ, et al. Cigarette smoke exposure during adolescence enhances sensitivity to the rewarding effects of nicotine in adulthood, even after a long period of abstinence. Neuropharmacology. 2015;99:9–14.

    Article  PubMed  Google Scholar 

  16. Pistis M, Perra S, Pillolla G, Melis M, Muntoni AL, Gessa GL. Adolescent exposure to cannabinoids induces long-lasting changes in the response to drugs of abuse of rat midbrain dopamine neurons. Biol Psychiatry. 2004;56(2):86–94.

    Article  CAS  PubMed  Google Scholar 

  17. Grant BF, Dawson DA. Age at onset of alcohol use and its association with DSM-IV alcohol abuse and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey. J Subst Abuse. 1997;9:103–10.

    Article  CAS  PubMed  Google Scholar 

  18. Chen K, Kandel DB. The natural history of drug use from adolescence to the mid-thirties in a general population sample. Am J Public Health. 1995;85(1):41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Braams BR, van Duijvenvoorde AC, Peper JS. Longitudinal changes in adolescent risk-taking: a comprehensive study of neural responses to rewards, pubertal development, and risk-taking behavior. J Neurosci. 2015;35(18):7226–38.

    Article  CAS  PubMed  Google Scholar 

  20. Mills KL, Goddings AL, Clasen LS, Giedd JN, Blakemore SJ. The developmental mismatch in structural brain maturation during adolescence. Dev Neurosci. 2014;36(3–4):147–60.

    Article  CAS  PubMed  Google Scholar 

  21. Riggs NR, Chou CP, Li C, Pentz MA. Adolescent to emerging adulthood smoking trajectories: when do smoking trajectories diverge, and do they predict early adulthood nicotine dependence? Nicotine Tob Res. 2007;9(11):1147–54.

    Article  PubMed  Google Scholar 

  22. Wang MQ, Fitzhugh EC, Green BL, Turner LW, Eddy JM, Westerfield RC. Prospective social-psychological factors of adolescent smoking progression. J Adolesc Health. 1999;24(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  23. Radziszewska B, Richardson JL, Dent CW, Flay BR. Parenting style and adolescent depressive symptoms, smoking, and academic achievement: ethnic, gender, and SES differences. J Behav Med. 1996;19(3):289–305.

    Article  CAS  PubMed  Google Scholar 

  24. Kandel DB, Davies M. Adult sequelae of adolescent depressive symptoms. Arch Gen Psychiatry. 1986;43(3):255–62.

    Article  CAS  PubMed  Google Scholar 

  25. Eissenberg T, Balster RL. Initial tobacco use episodes in children and adolescents: current knowledge, future directions. Drug Alcohol Depend. 2000;59 Suppl 1:S41–60.

    Article  PubMed  Google Scholar 

  26. Smith AE, Cavallo DA, Dahl T, Wu R, George TP, Krishnan-Sarin S. Effects of acute tobacco abstinence in adolescent smokers compared with nonsmokers. J Adolesc Health. 2008;43(1):46–54.

    Article  PubMed  PubMed Central  Google Scholar 

  27. US Department of Health and Human Services. Preventing tobacco use among youth and young adults: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2012.

    Google Scholar 

  28. McQuown SC, Belluzzi JD, Leslie FM. Low dose nicotine treatment during early adolescence increases subsequent cocaine reward. Neurotoxicol Teratol. 2007;29(1):66–73.

    Article  CAS  PubMed  Google Scholar 

  29. Craig EL, Zhao B, Cui JZ, Novalen M, Miksys S, Tyndale RF. Nicotine pharmacokinetics in rats is altered as a function of age, impacting the interpretation of animal model data. Drug Metab Dispos. 2014;42(9):1447–55.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Belluzzi JD, Lee AG, Oliff HS, Leslie FM. Age-dependent effects of nicotine on locomotor activity and conditioned place preference in rats. Psychopharmacology (Berl). 2004;174(3):389–95.

    Article  CAS  Google Scholar 

  31. Werling LL, Reed SC, Wade D, Izenwasser S. Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats. Int J Dev Neurosci. 2009;27(3):263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burns BE, Proctor WR. Cigarette smoke exposure greatly increases alcohol consumption in adolescent C57BL/6 mice. Alcohol Clin Exp Res. 2013;37 Suppl 1:E364–72.

    Article  CAS  PubMed  Google Scholar 

  33. Lydon DM, Wilson SJ, Child A, Geier CF. Adolescent brain maturation and smoking: what we know and where we’re headed. Neurosci Biobehav Rev. 2014;45:323–42.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jasinska AJ, Zorick T, Brody AL, Stein EA. Dual role of nicotine in addiction and cognition: a review of neuroimaging studies in humans. Neuropharmacology. 2014;84:111–22.

    Article  CAS  PubMed  Google Scholar 

  35. Baker LK, Mao D, Chi H, Govind AP, Vallejo YF, Iacoviello M, et al. Intermittent nicotine exposure upregulates nAChRs in VTA dopamine neurons and sensitises locomotor responding to the drug. Eur J Neurosci. 2013;37(6):1004–11.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wu J, Liu Q, Yu K, Hu J, Kuo YP, Segerberg M, et al. Roles of nicotinic acetylcholine receptor beta subunits in function of human alpha4-containing nicotinic receptors. J Physiol. 2006;576(Pt 1):103–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walters CL, Brown S, Changeux JP, Martin B, Damaj MI. The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology (Berl). 2006;184(3–4):339–44.

    Article  CAS  Google Scholar 

  38. McKee SA, Weinberger AH. How can we use our knowledge of alcohol-tobacco interactions to reduce alcohol use? Annu Rev Clin Psychol. 2013;9:649–74.

    Article  PubMed  Google Scholar 

  39. Doura MB, Gold AB, Keller AB, Perry DC. Adult and periadolescent rats differ in expression of nicotinic cholinergic receptor subtypes and in the response of these subtypes to chronic nicotine exposure. Brain Res. 2008;1215:40–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Champtiaux N, Gotti C, Cordero-Erausquin M, David DJ, Przybylski C, Lena C, et al. Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice. J Neurosci. 2003;23(21):7820–9.

    CAS  PubMed  Google Scholar 

  41. Stoker AK, Markou A. Unraveling the neurobiology of nicotine dependence using genetically engineered mice. Curr Opin Neurobiol. 2013;23(4):493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Trauth JA, Seidler FJ, McCook EC, Slotkin TA. Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain Res. 1999;851(1–2):9–19.

    Article  CAS  PubMed  Google Scholar 

  43. Grant BF, Dawson DA, Stinson FS, Chou SP, Dufour MC, Pickering RP. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991–1992 and 2001–2002. Drug Alcohol Depend. 2004;74(3):223–34.

    Article  PubMed  Google Scholar 

  44. Jacobus J, Tapert SF. Neurotoxic effects of alcohol in adolescence. Annu Rev Clin Psychol. 2013;9:703–21.

    Article  PubMed  Google Scholar 

  45. Tapert SF, Schweinsburg AD, Barlett VC, Brown SA, Frank LR, Brown GG, et al. Blood oxygen level dependent response and spatial working memory in adolescents with alcohol use disorders. Alcohol Clin Exp Res. 2004;28(10):1577–86.

    Article  PubMed  Google Scholar 

  46. Hommer D, Momenan R, Kaiser E, Rawlings R. Evidence for a gender-related effect of alcoholism on brain volumes. Am J Psychiatry. 2001;158(2):198–204.

    Article  CAS  PubMed  Google Scholar 

  47. Pfefferbaum A, Rosenbloom M, Deshmukh A, Sullivan E. Sex differences in the effects of alcohol on brain structure. Am J Psychiatry. 2001;158(2):188–97.

    Article  CAS  PubMed  Google Scholar 

  48. Squeglia LM, Boissoneault J, Van Skike CE, Nixon SJ, Matthews DB. Age-related effects of alcohol from adolescent, adult, and aged populations using human and animal models. Alcohol Clin Exp Res. 2014;38(10):2509–16.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Spear LP. Adolescent alcohol exposure: are there separable vulnerable periods within adolescence? Physiol Behav. 2015;148:122–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Skike CE, Botta P, Chin VS, Tokunaga S, McDaniel JM, Venard J, et al. Behavioral effects of ethanol in cerebellum are age dependent: potential system and molecular mechanisms. Alcohol Clin Exp Res. 2010;34(12):2070–80.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Spear LP, Varlinskaya EI. Adolescence. Alcohol sensitivity, tolerance, and intake. Recent Dev Alcohol. 2005;17:143–59.

    Article  PubMed  Google Scholar 

  52. Ehlers CL, Desikan A, Wills DN. Developmental differences in EEG and sleep responses to acute ethanol administration and its withdrawal (hangover) in adolescent and adult Wistar rats. Alcohol. 2013;47(8):601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lacaille H, Duterte-Boucher D, Liot D, Vaudry H, Naassila M, Vaudry D. Comparison of the deleterious effects of binge drinking-like alcohol exposure in adolescent and adult mice. J Neurochem. 2015;132(6):629–41.

    Article  CAS  PubMed  Google Scholar 

  54. Ehlers CL, Oguz I, Budin F, Wills DN, Crews FT. Peri-adolescent ethanol vapor exposure produces reductions in hippocampal volume that are correlated with deficits in prepulse inhibition of the startle. Alcohol Clin Exp Res. 2013;37(9):1466–75.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ehlers CL, Liu W, Wills DN, Crews FT. Periadolescent ethanol vapor exposure persistently reduces measures of hippocampal neurogenesis that are associated with behavioral outcomes in adulthood. Neuroscience. 2013;244:1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schindler AG, Tsutsui KT, Clark JJ. Chronic alcohol intake during adolescence, but not adulthood, promotes persistent deficits in risk-based decision making. Alcohol Clin Exp Res. 2014;38(6):1622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zandy SL, Matthews DB, Tokunaga S, Miller AD, Blaha CD, Mittleman G. Reduced dopamine release in the nucleus accumbens core of adult rats following adolescent binge alcohol exposure: age and dose-dependent analysis. Psychopharmacology (Berl). 2015;232(4):777–84.

    Article  CAS  Google Scholar 

  58. Fabio MC, Nizhnikov ME, Spear NE, Pautassi RM. Binge ethanol intoxication heightens subsequent ethanol intake in adolescent, but not adult, rats. Dev Psychobiol. 2014;56(3):574–83.

    Article  CAS  PubMed  Google Scholar 

  59. Renard J, Krebs MO, Le Pen G, Jay TM. Long-term consequences of adolescent cannabinoid exposure in adult psychopathology. Front Neurosci. 2014;8:361.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Schwartz RH, Gruenewald PJ, Klitzner M, Fedio P. Short-term memory impairment in cannabis-dependent adolescents. Am J Dis Child. 1989;143(10):1214–9.

    CAS  PubMed  Google Scholar 

  61. Harvey MA, Sellman JD, Porter RJ, Frampton CM. The relationship between non-acute adolescent cannabis use and cognition. Drug Alcohol Rev. 2007;26(3):309–19.

    Article  PubMed  Google Scholar 

  62. Hanson KL, Winward JL, Schweinsburg AD, Medina KL, Brown SA, Tapert SF. Longitudinal study of cognition among adolescent marijuana users over three weeks of abstinence. Addict Behav. 2010;35(11):970–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arseneault L, Cannon M, Poulton R, Murray R, Caspi A, Moffitt TE. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ. 2002;325(7374): 1212–3.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tapert SF, Schweinsburg AD, Drummond SP, Paulus MP, Brown SA, Yang TT, et al. Functional MRI of inhibitory processing in abstinent adolescent marijuana users. Psychopharmacology (Berl). 2007;194(2):173–83.

    Article  CAS  Google Scholar 

  65. Becker B, Wagner D, Gouzoulis-Mayfrank E, Spuentrup E, Daumann J. The impact of early-onset cannabis use on functional brain correlates of working memory. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):837–45.

    Article  CAS  PubMed  Google Scholar 

  66. Meier MH, Caspi A, Ambler A, Harrington H, Houts R, Keefe RS, et al. Persistent cannabis users show neuropsychological decline from childhood to midlife. Proc Natl Acad Sci U S A. 2012;109(40):E2657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rubino T, Parolaro D. Long lasting consequences of cannabis exposure in adolescence. Mol Cell Endocrinol. 2008;286(1–2 Suppl 1):S108–13.

    Article  CAS  PubMed  Google Scholar 

  68. Moore NL, Greenleaf AL, Acheson SK, Wilson WA, Swartzwelder HS, Kuhn CM. Role of cannabinoid receptor type 1 desensitization in greater tetrahydrocannabinol impairment of memory in adolescent rats. J Pharmacol Exp Ther. 2010;335(2):294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cha YM, Jones KH, Kuhn CM, Wilson WA, Swartzwelder HS. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol. 2007;18(5–6):563–9.

    Article  CAS  PubMed  Google Scholar 

  70. Cha YM, White AM, Kuhn CM, Wilson WA, Swartzwelder HS. Differential effects of delta9-THC on learning in adolescent and adult rats. Pharmacol Biochem Behav. 2006;83(3):448–55.

    Article  CAS  PubMed  Google Scholar 

  71. Steel RW, Miller JH, Sim DA, Day DJ. Learning impairment by ∆(9)-tetrahydrocannabinol in adolescence is attributable to deficits in chunking. Behav Pharmacol. 2011;22(8):837–46.

    Article  CAS  PubMed  Google Scholar 

  72. Steel RW, Miller JH, Sim DA, Day DJ. Delta-9-tetrahydrocannabinol disrupts hippocampal neuroplasticity and neurogenesis in trained, but not untrained adolescent Sprague–Dawley rats. Brain Res. 2014;1548:12–9.

    Article  CAS  PubMed  Google Scholar 

  73. Rubino T, Realini N, Braida D, Guidi S, Capurro V, Vigano D, et al. Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus. 2009;19(8):763–72.

    Article  CAS  PubMed  Google Scholar 

  74. Rubino T, Vigano D, Realini N, Guidali C, Braida D, Capurro V, et al. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: behavioral and biochemical correlates. Neuropsychopharmacology. 2008;33(11):2760–71.

    Article  CAS  PubMed  Google Scholar 

  75. Rubino T, Prini P, Piscitelli F, Zamberletti E, Trusel M, Melis M, et al. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex. Neurobiol Dis. 2015;73:60–9.

    Article  CAS  PubMed  Google Scholar 

  76. Rubino T, Realini N, Braida D, Alberio T, Capurro V, Vigano D, et al. The depressive phenotype induced in adult female rats by adolescent exposure to THC is associated with cognitive impairment and altered neuroplasticity in the prefrontal cortex. Neurotox Res. 2009;15(4):291–302.

    Article  CAS  PubMed  Google Scholar 

  77. Winsauer PJ, Daniel JM, Filipeanu CM, Leonard ST, Hulst JL, Rodgers SP, et al. Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict Biol. 2011;16(1):64–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dow-Edwards D, Izenwasser S. Pretreatment with ∆9-tetrahydrocannabinol (THC) increases cocaine-stimulated activity in adolescent but not adult male rats. Pharmacol Biochem Behav. 2012;100(3):587–91.

    Article  CAS  PubMed  Google Scholar 

  79. Ellgren M, Spano SM, Hurd YL. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology. 2007;32(3):607–15.

    Article  CAS  PubMed  Google Scholar 

  80. Stopponi S, Soverchia L, Ubaldi M, Cippitelli A, Serpelloni G, Ciccocioppo R. Chronic THC during adolescence increases the vulnerability to stress-induced relapse to heroin seeking in adult rats. Eur Neuropsychopharmacol. 2014;24(7):1037–45.

    Article  CAS  PubMed  Google Scholar 

  81. Johnston LD, Miech RA, O’Malley PM, Bachman JG, Schulenberg JE. Use of alcohol, cigarettes, and number of illicit drugs declines among U.S. teens. Ann Arbor: University of Michigan News Service; 2014. http://www.monitoringthefuture.org. Retrieved 03 Aug 2015.

  82. Kaltiala-Heino R, Koivisto AM, Marttunen M, Frojd S. Pubertal timing and substance use in middle adolescence: a 2-year follow-up study. J Youth Adolesc. 2011;40:1288–301.

    Article  PubMed  Google Scholar 

  83. Kuhn C. Emergence of sex differences in the development of substance use and abuse during adolescence. Pharmacol Ther. 2015;153:55–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zosel A, Bartelson BB, Bailey E, Lowenstein S, Dart R. Characterization of adolescent prescription drug abuse and misuse using the Research Abuse Diversion and Addiction-related Surveillance (RADARS(®)) System. J Am Acad Child Adolesc Psychiatry. 2013;52:196–204.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Morrison TR, Ricci LA, Melloni Jr RH. Anabolic/androgenic steroid administration during adolescence and adulthood differentially modulates aggression and anxiety. Horm Behav. 2015;69:132–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hildebrandt T, Langenbucher JW, Flores A, Harty S, Berlin HA. The influence of age of onset and acute anabolic steroid exposure on cognitive performance, impulsivity, and aggression in men. Psychol Addict Behav. 2014;28:1096–104.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hakansson A, Mickelsson K, Wallin C, Berglund M. Anabolic androgenic steroids in the general population: user characteristics and associations with substance use. Eur Addict Res. 2012;18:83–90.

    Article  PubMed  Google Scholar 

  88. Pope Jr HG, Kanayama G, Athey A, Ryan E, Hudson JI, Baggish A. The lifetime prevalence of anabolic-androgenic steroid use and dependence in Americans: current best estimates. Am J Addict. 2014;23:371–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Matthews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Van Skike, C.E., Zandy, S.L., Matthews, D.B. (2016). Substance Use in Adolescence. In: Kumanov, P., Agarwal, A. (eds) Puberty. Springer, Cham. https://doi.org/10.1007/978-3-319-32122-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32122-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32120-2

  • Online ISBN: 978-3-319-32122-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics