Skip to main content

Growth Hormone and Steroid Assays’ Problems in Childhood and Puberty

  • Chapter
  • First Online:
Puberty
  • 1597 Accesses

Abstract

Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are the most important laboratory parameters used in the diagnosis of GH-related disorders in childhood and puberty. Problems of the immunoassays (IAs) for measuring GH and IGF-I, including lack of standardization, harmonization, and comparability, should be well understood and considered in the clinical assessment and interpretation. Application of liquid chromatography coupled to mass spectrometry (LC–MS) could overcome the limitations of IAs, but is still far from wide clinical use. One approach in diagnosing and management of GH deficiency relies solely on the measurement of IGF-I. The second, more traditional approach comprises a two-step testing of GH concentrations after pharmacologic stimulation. Abnormal concentration of steroids in children and adolescents is of great clinical importance for diagnosing a variety of disturbances, but modern IAs despite of their high capacity, speed, and automation do not meet the requirements for sensitivity and specificity and have unacceptable performance. LC–MS provides the highest possible reliability for steroid analysis and already becomes the preferred routine technique in many laboratories. Further significant advantages of LC–MS include relatively high throughput and the ability to perform panel steroid profiling with simultaneous measurement of precursors, active hormones, and metabolites in a single sample, thus amplifying enormously the informative value of laboratory results, with ultimate improvement of patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter WE, Bazydlo LAL, Harris NS. Quick guide to endocrinology. Washington, DC: AACC Press; 2013.

    Google Scholar 

  2. Winter WE, Jialal I, Vance ML, et al. Pituitary function and pathophysiology. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis: Elsevier Saunders; 2012. p. 1803–45.

    Chapter  Google Scholar 

  3. Boulo S, Hanisch K, Bidlingmaier M, et al. Gaps in the traceability chain of human growth hormone measurements. Clin Chem. 2013;59:1074–82.

    Article  CAS  PubMed  Google Scholar 

  4. Murray PG, Dattani MT, Clayton PE. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence. Arch Dis Child. 2014. doi:10.1136/archdischild-2014-307228.

    PubMed  Google Scholar 

  5. Van Helden J, Hermsen D, Von Ahsen N, et al. Performance evaluation of a fully automated immunoassay for the detection of human growth hormone on the Elecsys immunoassay system. Clin Lab. 2014;60:1641–51.

    PubMed  Google Scholar 

  6. Wieringa GE, Sturgeon CM, Trainer PJ. The harmonisation of growth hormone measurements: taking the next steps. Clin Chim Acta. 2014;432:68–71.

    Article  CAS  PubMed  Google Scholar 

  7. Clemmons DR. Consensus statement on the standardization and evaluation of growth hormone and insulin-like growth factor assays. Clin Chem. 2011;57:555–9.

    Article  CAS  PubMed  Google Scholar 

  8. Gomez-Gomez C, Iglesias EM, Barallat J, et al. Lack of transferability between two automated immunoassays for serum IGF-I measurement. Clin Lab. 2014;60:1859–64.

    CAS  PubMed  Google Scholar 

  9. Junnila RK, Strasburger CJ, Bidlingmaier M. Pitfalls of insulin-like growth factor-I and growth hormone assays. Endocrinol Metab Clin North Am. 2015;44:21–34.

    Article  Google Scholar 

  10. Cox HD, Lopes F, Woldemariam GA, et al. Interlaboratory agreement of insulin-like growth factor 1. Concentrations measured by mass spectrometry. Clin Chem. 2014;60:541–8.

    Article  CAS  PubMed  Google Scholar 

  11. Such-Sanmartín G, Bache N, Bosch J, et al. Detection and differentiation of 22kDa and 20kDa growth hormone proteoforms in human plasma by LC-MS/MS. Biochim Biophys Acta. 1854;2015:284–90.

    Google Scholar 

  12. Oran PE, Trenchevska O, Nedelkov D, et al. Parallel workflow for high-throughput (>1,000 samples/day) quantitative analysis of human insulin-like growth factor 1 using mass spectrometric immunoassay. PLoS One. 2014;9:e92801.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arsene CG, Henrion A, Diekmann N, et al. Quantification of growth hormone in serum by isotope dilution mass spectrometry. Anal Biochem. 2010;401:228–35.

    Article  CAS  PubMed  Google Scholar 

  14. Barton C, Kay RG, Gentzer W, et al. Development of high-throughput chemical extraction techniques and quantitative HPLC-MS/MS (SRM) assays for clinically relevant plasma proteins. J Proteome Res. 2010;9:333–40.

    Article  CAS  PubMed  Google Scholar 

  15. Wagner IV, Paetzold C, Gausche R, et al. Clinical evidence-based cutoff limits for GH stimulation tests in children with a backup of results with reference to mass spectrometry. Eur J Endocrinol. 2014;171:389–97.

    Article  CAS  PubMed  Google Scholar 

  16. Bidlingmaier M, Friedrich N, Emeny RT, et al. Reference intervals for insulin-like growth factor-1 (IGF-I) from birth to senescence: results from a multicenter study using a new automated chemiluminescence IGF-I immunoassay conforming to recent international recommendations. J Clin Endocrinol Metab. 2014;99:1712–21.

    Article  CAS  PubMed  Google Scholar 

  17. Soldin S, Soldin OP. Steroid hormone analysis by tandem mass spectrometry. Clin Chem. 2009;55:1061–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Konforte D, Shea JL, Kyriakopoulou L, et al. Complex biological pattern of fertility hormones in children and adolescents: a study of healthy children from the CALIPER cohort and establishment of pediatric reference intervals. Clin Chem. 2013;59:1215–27.

    Article  CAS  PubMed  Google Scholar 

  19. Bertholf RL, Jialal I, Winter WE. The adrenal cortex. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis: Elsevier Saunders; 2012. p. 1847–904.

    Chapter  Google Scholar 

  20. Isbell TS, Jungheim E, Gronowski AM. Reproductive endocrinology and related disorders. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. St. Louis: Elsevier Saunders; 2012. p. 1945–90.

    Chapter  Google Scholar 

  21. Turpeinen U, Hämäläinen E, Haanpää M, et al. Determination of salivary testosterone and androstenedione by liquid chromatography-tandem mass spectrometry. Clin Chim Acta. 2012;413:594–9.

    Article  CAS  PubMed  Google Scholar 

  22. Fritz KS, McKean AJS, Nelson JC, et al. Analog-based free testosterone test results linked to total testosterone concentrations, not free testosterone concentrations. Clin Chem. 2008;54:512–6.

    Article  CAS  PubMed  Google Scholar 

  23. Gröschl M. Current status of salivary hormone analysis. Clin Chem. 2008;54:1759–69.

    Article  PubMed  Google Scholar 

  24. Taylor A, Keevil B, Huhtaniemi IT. Mass spectrometry and immunoassay; how to measure steroid hormones today and tomorrow. Eur J Endocrinol. 2015;173:D1–12. European Society of Endocrinology, Manuscript EJE-15-0338.

    Article  CAS  PubMed  Google Scholar 

  25. Benton SC, Nuttal M, Nardo L, et al. Measured dehydroepiandrosterone sulfate positively influences testosterone measurement in unextracted female serum: comparison of 2 immunoassays with testosterone measured by LC-MS. Clin Chem. 2011;57:1174–83.

    Article  Google Scholar 

  26. Huang X, Spink DC, Schneider E, et al. Measurement of unconjugated estriol in serum by liquid chromatography–tandem mass spectrometry and assessment of the accuracy of chemiluminescent immunoassays. Clin Chem. 2014;60:260–8.

    Article  CAS  PubMed  Google Scholar 

  27. Stanczyk FZ, Lee JS, Santen RJ. Standardization of steroid hormone assays: why, how, and when. Cancer Epidemiol Biomarkers Prev. 2007;16:1713–9.

    Article  CAS  PubMed  Google Scholar 

  28. Handelsman DJ, Newman JD, Jimenez M, et al. Performance of direct estradiol immunoassays with human male serum samples. Clin Chem. 2014;60:510–7.

    Article  CAS  PubMed  Google Scholar 

  29. Krone N, Hughes BA, Lavery GG. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol. 2010;121:496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Handelsman DJ, Wartofsky L. Requirement for mass spectrometry sex steroid assays in the Journal of Clinical Endocrinology and Metabolism. J Clin Endocrinol Metab. 2013;98:3971–3.

    Article  CAS  PubMed  Google Scholar 

  31. Kushnir MM, Rockwood AL, Roberts WL, et al. Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem. 2011;44:77–88.

    Article  CAS  PubMed  Google Scholar 

  32. Ketha H, Kaur S, Grebe S, Sihgh RJ. Clinical applications of LC-MS sex steroid assays: evolution of methodologies in 21st century. Curr Opin Endocrinol Diabetes Obes. 2014;21:217–26.

    Article  CAS  PubMed  Google Scholar 

  33. Botelho JK, Shaklady C, Cooper HC, et al. Isotope-dilution liquid chromatography–tandem mass spectrometry candidate reference method for total testosterone in human serum. Clin Chem. 2013;59:372–80.

    Article  CAS  PubMed  Google Scholar 

  34. Rosner W. Another reference measurement procedure for total testosterone—what’s the fuss? Clin Chem. 2013;59:338–9.

    Article  CAS  PubMed  Google Scholar 

  35. Koal T, Schmiederer D, Pham-Tuan H, et al. Standardized LC-MS/MS based steroid hormone profile-analysis. J Steroid Biochem Mol Biol. 2012;129:129–38.

    Article  CAS  PubMed  Google Scholar 

  36. Shiraishi S, Lee PWN, Leund A, et al. Simultaneous measurement of serum testosterone and dihydrotestosterone by liquid chromatography–tandem mass spectrometry. Clin Chem. 2008;54:1855–63.

    Article  CAS  PubMed  Google Scholar 

  37. Kyriakopoulou L, Yazdanpanah M, Colantonio DA, et al. A sensitive and rapid mass spectrometric method for the simultaneous measurement of eight steroid hormones and CALIPER pediatric reference intervals. Clin Biochem. 2013;46:642–51.

    Article  CAS  PubMed  Google Scholar 

  38. Kushnir MM, Blamires T, Rockwood LA, et al. Liquid chromatography–tandem mass spectrometry assay for androstenedione, dehydroepiandrosterone, and testosterone with pediatric and adult reference intervals. Clin Chem. 2010;56:1138–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dobrin A. Svinarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Svinarov, D.A. (2016). Growth Hormone and Steroid Assays’ Problems in Childhood and Puberty. In: Kumanov, P., Agarwal, A. (eds) Puberty. Springer, Cham. https://doi.org/10.1007/978-3-319-32122-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32122-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32120-2

  • Online ISBN: 978-3-319-32122-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics