Skip to main content

Biomaterials Obtained by Gelation

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology
  • 465 Accesses

Abstract

Biomaterials play a crucial role to improve the quality of life of patients who need a medical implant. The present chapter is focused on those biomaterials which can be made by sol-gel processing and particularly on the developments achieved in the last decade. The chemistry involved in sol-gels permits to drastically improve the properties of biomaterials which are addressed here by order of increased sophistication. In a first section, traditional biomaterials and their synthesis by sol-gel are described. After a brief summary of the properties required for a biomaterial and of sol-gel processing, the materials addressed comprise the calcium phosphates, the so-called bioglasses based on sol-gel silica and their shaping as porous scaffolds, and the organic hydrogels. In a second section, the bioactivity tests applied to biomaterials, as well as the bioactivity mechanisms considered to operate in bioglasses, are summarized. A third section is focused on sol-gel TiO2 based biomaterials, while the next section is dedicated to sol-gel composites and hybrid organic–inorganic gels. The latter group includes a summary of the challenge to introduce calcium in hybrids. A last section concerns the highest present degree of sophistication aimed in biomaterials, which is the entrapment of bioactive molecules in the gels, such as growth factors. The aim is that such additives must be progressively delivered to the surrounding tissues during the lifetime of an implant, so as to improve its biocompatibility for a longer time span.

Alain C. Pierre has retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ääritalo V, Areva S, Jokinen M, Linden M, Peltola T. Sol–gel derived TiO2–SiO2 implant coatings for direct tissue attachment. Part I. Design, preparation and characterization. J Mater Sci Mater Med. 2007;18:1863–73.

    Google Scholar 

  • Advincula MC, Rahemtulla FG, Advincula RC, Ada ET, Lemons JE, Bellis SL. Osteoblast adhesion and matrix mineralization on sol–gel-derived titanium oxide. Biomaterials. 2006;27:2201–12.

    CAS  Google Scholar 

  • Aguirre A, Gonzalez A, Planell JA, Engel E. Extracellular calcium modulates in vitro bone marrow-derived Flk-1(+) CD34(+) progenitor cell chemotaxis and differentiation through a calcium-sensing receptor. Biochem Biophys Res Commun. 2010;393:156–61.

    CAS  Google Scholar 

  • Ahmed EM. Hydrogel: preparation, characterization and applications: a review. J Adv Res Cairo Univ. 2015;6:105–21.

    Google Scholar 

  • Allo BA, Rizkalla AS, Mequanint K. Synthesis and electrospinning of epsilon polycaprolactone-bioactive glass hybrid biomaterials via a sol–gel process. Langmuir. 2010;26:18340–8.

    CAS  Google Scholar 

  • Almeida RM, Gama A, Vueva Y. Bioactive sol–gel scaffolds with dual porosity for tissue engineering. J Sol–Gel Sci Technol. 2011;57:336–42.

    Google Scholar 

  • Alves Cardoso D, Jansen JA, Leeuwenburgh SCG. Synthesis and application of nanostructured calcium phosphate ceramics for bone regeneration. J Biomed Mater Res B. 2012;100B:2316–26.

    CAS  Google Scholar 

  • Areva S, Paldan H, Peltola T, Närhi T, Jokinen M, Lindén M. Use of sol–gel-derived titania coating for direct soft tissue attachment. J Biomed Mater Res A. 2004;70:169–78.

    Google Scholar 

  • Areva S, Ääritalo V, Tuusa M, Jokinen M, Linden M, Peltola T. Sol–gel-derived TiO2–SiO2 implant coatings for direct tissue attachment. Part II. Evaluation of cell response. J Mater Sci Mater Med. 2007;18:1633–43.

    CAS  Google Scholar 

  • Bahniuk MS, Pirayesh H, Singh HD, Nychka JA, Unsworth LD. Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma. Biointerphases. 2012;7: Article 41.

    Google Scholar 

  • Bartneck M, Heffels K-H, Pand Y, Bovi M, Zwadlo-Klarwasser G, Groll J. Inducing healing-like human primary macrophage phenotypes by 3D hydrogel coated nanofibres. Biomaterials. 2012;33:4136–46.

    CAS  Google Scholar 

  • Bellantone M, Williams HD, Hench LL. Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother. 2002;46:1940–5.

    CAS  Google Scholar 

  • Bellucci D, Sola A, Salvatori R, Anesi A, Chiarini L, Cannillo V. Sol–gel derived bioactive glasses with low tendency to crystallize: synthesis, post-sintering bioactivity and possible application for the production of porous scaffolds. Mater Sci Eng C. 2014;43:573–86.

    CAS  Google Scholar 

  • Bergmann CP, Stumpf A. Dental ceramics, topics in mining, metallurgy and materials engineering. Berlin/Heidelberg: Springer; 2013. p. 9. doi:10.1007/978-3-642-38224-6_2, Chapter 2.

    Book  Google Scholar 

  • Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30:2175–9.

    CAS  Google Scholar 

  • Boutin P. Total arthroplasty of the hip by fritted alumina prosthesis. Experimental study and 1st clinical applications. Orthop Traumatol Surg Res. 2014;100:15–21.

    CAS  Google Scholar 

  • Buehler MJ, Rabu P, Taubert A, editors. Advanced hybrid materials: design and applications, vol. 2012. Weinheim: Wiley-VCH; 2012.

    Google Scholar 

  • Bui XV, Nguyen VB, Le TTH, Do QM. In vitro apatite formation on the surface of bioactive glass. Glass Phys Chem. 2013;39:64–6.

    CAS  Google Scholar 

  • Cameron HU, Macnab I, Pilliar RM. Evaluation of biodegradable ceramic. J Biomed Mater Res. 1977;11:179–86.

    CAS  Google Scholar 

  • Carraro M, Gross S. Hybrid materials based on the embedding of organically modified transition metal oxoclusters or polyoxometalates into polymers for functional applications: a review. Materials. 2014;7:3956–89.

    Google Scholar 

  • Catauro M, Bollino F. Release kinetics of anti-inflammatory drug, and characterization and bioactivity of SiO2 + PCL hybrid material synthesized by sol–gel processing. J Appl Biomater Funct Mater. 2014;12:218–27.

    Google Scholar 

  • Catauro M, Bollino F, Veronesi P, Lamanna G. Influence of PCL on mechanical properties and bioactivity of ZrO2-based hybrid coatings synthesized by sol–gel dip coating technique. Mater Sci Eng C. 2014a;39:344–51.

    CAS  Google Scholar 

  • Catauro M, Bollino F, Papale F, Giovanardi R, Veronesi P. Corrosion behavior and mechanical properties of bioactive sol–gel coatings on titanium implants. Mater Sci Eng C. 2014b;43:375–82.

    CAS  Google Scholar 

  • Catauro M, Papale F, Bollino F, Gallicchio M, Pacifico S. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique. Mater Sci Eng C. 2014c;40:253–9.

    CAS  Google Scholar 

  • Catauro M, Papale F, Roviello G, Ferone C, Bollino F, Trifuoggi M, Aurilio C. Synthesis of SiO2 and CaO rich calcium silicate systems via sol–gel process: bioactivity, biocompatibility, and drug delivery tests. J Biomed Mater Res A. 2014d;102:3087–92.

    CAS  Google Scholar 

  • Catauro M, Bollino F, Papale F. Biocompatibility improvement of titanium implants by coating with hybrid materials synthesized by sol–gel technique. J Biomed Mater Res A. 2014e;102:4473–9.

    CAS  Google Scholar 

  • Catauro M, Bollino F, Papale F, Mozetic P, Rainer A, Trombetta M. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation. Mater Sci Eng C. 2014f;45:395–401.

    CAS  Google Scholar 

  • Catauro M, Bollino F, Papale F, Gallicchio M, Pacifico S. Influence of the polymer amount on bioactivity and biocompatibility of SiO2/PEG hybrid materials synthesized by sol–gel technique. Mater Sci Eng C. 2015a;48:548–55.

    CAS  Google Scholar 

  • Catauro M, Bollino F, Papale F, Marciano S, Pacifico S. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications. Mater Sci Eng C. 2015b;47:135–41.

    CAS  Google Scholar 

  • Catauro M, Bollinoa F, Papale F, Ferrara C, Mustarelli P. Silica–polyethylene glycol hybrids synthesized by sol–gel: biocompatibility improvement of titanium implants by coating. Mater Sci Eng C. 2015c;55:118–25.

    CAS  Google Scholar 

  • Catauro M, Bollino F, Papale F, Piccolella S, Pacifico S. Sol–gel synthesis and characterization of SiO2/PCL hybrid materials containing quercetin as new materials for antioxidant implants. Mater Sci Eng C. 2016;58:945–52.

    CAS  Google Scholar 

  • Cerruti MG, Greenspan D, Powers K. An analytical model for the dissolution of different particle size samples of bioglass in TRIS-buffered solution. Biomaterials. 2005;26:4903–11.

    CAS  Google Scholar 

  • Chai F, Raoula G, Wissa A, Ferria J, Hildebrand HF. Les biomatériaux de substitution osseuse: classification et intérêt. Rev Stomatol Chir Maxillofac. 2011;112:212–21.

    CAS  Google Scholar 

  • Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;17:467–79.

    CAS  Google Scholar 

  • Chen R, Hao J. Preparation and characterization of poly(ε-caprolactone-co-p-dioxanone)–poly(ethylene glycol)–Poly(ε-caprolactone-co-p-dioxanone)/bioactive inorganic particle nanocomposites. J Appl Polym Sci. 2013;4:2287–93.

    Google Scholar 

  • Chen Q-Z, Thouas GA. Fabrication and characterization of sol–gel derived 45S5 Bioglass-ceramic scaffolds. Acta Biomater. 2011;7:3616–26.

    CAS  Google Scholar 

  • Chen Q, Miyata N, Kokubo T, Nakamura T. Bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids prepared by sol–gel process. J Biomed Mater Res. 2000;51:605–11.

    CAS  Google Scholar 

  • Chen Q, Miyata N, Kokubo T, Nakamura T. Effect of heat treatment on bioactivity and mechanical properties of PDMS-modified CaO–SiO2–TiO2 hybrids via sol–gel process. J Mater Sci Mater Med. 2001;12:515–22.

    CAS  Google Scholar 

  • Cheung RCF, Ng TB, Wong JH, Chan WY. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar Drugs. 2015;13:5156–86. doi:10.3390/md13085156.

    Article  CAS  Google Scholar 

  • Coelho MD, Pereira MM. Sol–gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J Biomed Mater Res B. 2005;75B:451–6.

    Google Scholar 

  • Cutright DE, Bhaskar SN, Brady JM, Getter L, Posey WR. Reaction of bone to tricalcium phosphate ceramic pellets. Oral Surg Oral Med Oral Pathol. 1972;33:850–6.

    CAS  Google Scholar 

  • Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I. Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 1990;46:20–7.

    CAS  Google Scholar 

  • Danielssona C, Ruaulta S, Simonet M, Neuenschwander P, Freya P. Polyesterurethane foam scaffold for smooth muscle cell tissue engineering. Biomaterials. 2006;27:1410–5.

    Google Scholar 

  • De Aza PN, Luklinska ZB, Santos C, Guitian F, De AS. Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials. 2003;24:1437–45.

    Google Scholar 

  • Deguchi K, Tsuru K, Hayashi T, Takaishi M, Nagahara M, Nagotani S, Sehara Y, Jin G, Zhang H, Hayakawa S, Shoji M, Miyazaki M, Osaka A, Huh N-H, Abe K. Implantation of a new porous gelatin-siloxane hybrid into a brain lesion as a potential scaffold for tissue regeneration. J Cereb Blood Flow Metab. 2006;26:1263–73.

    CAS  Google Scholar 

  • Delcroix GJ, Garbayo E, Sindji L, Thomas O, Vanpouille-Box C, Schiller PC, Montero-Menei CN. The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats. Biomaterials. 2011;32:1560–73.

    CAS  Google Scholar 

  • Demirel M, Aksakal B. Enhanced bone regeneration in rabbit tibial defects implanted with newly fabricated bioceramic bone grafts. Int J Appl Ceram Technol. 2015;12:254–63.

    CAS  Google Scholar 

  • Dessı M, Raucci MG, Zeppetelli S, Ambrosio L. Design of injectable organic–inorganic hybrid for bone tissue repair. J Biomed Mater Res A. 2012;100A:2063–70.

    Google Scholar 

  • Doostmohammadi A, Monshi A, Fathi MH, Braissant O. A comparative physicochemical study of bioactive glass and bone-derived hydroxyapatite. Ceram Int. 2011;37:1601–7.

    CAS  Google Scholar 

  • Dorozhkin SV. Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 2010;6:715–34.

    CAS  Google Scholar 

  • Earl JS, Leary RK, Muller KH, Langford RM, Greenspan DC. Physical and chemical characterization of dentin surface, following treatment with NovaMin-technology. J Clin Dent. 2011;22:62–7.

    CAS  Google Scholar 

  • El-Kady AM, Ali AF, Rizk RA, Ahmed MM. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int. 2012;38:177–88.

    CAS  Google Scholar 

  • Fitzgerald V, Martin RA, Jones JR, Qiu D, Wetherall KM, Moss RM, Newport RJ. Bioactive glass sol–gel foam scaffolds: evolution of nanoporosity during processing and in situ monitoring of apatite layer formation using small- and wide-angle X-ray scattering. J Biomed Mater Res A. 2009;91A:76–83.

    CAS  Google Scholar 

  • Fu Q, Rahaman MN, Bal BS, Kuroki K, Brown RF. In vivo evaluation of 13–93 bioactive glass scaffolds with trabecular and oriented microstructures in a subcutaneous rat implantation model. J Biomed Mater Res A. 2010;95A:235–44.

    CAS  Google Scholar 

  • Fu Q, Saiz E, Tomsia AP. Bioinspired strong and highly porous glass scaffolds. Adv Funct Mater. 2011;21:1058–63.

    CAS  Google Scholar 

  • Gao C, Rahaman MN, Gao Q, Teramoto A, Abe K. Robotic deposition and in vitro characterization of 3D gelatin-bioactive glass hybrid scaffolds for biomedical applications. J Biomed Mater Res A. 2013;101A:2027–37.

    CAS  Google Scholar 

  • Gervaso F, Scalera F, Padmanabhan SK, Sannino A, Licciulli L. High-performance hydroxyapatite scaffolds for bone tissue engineering applications. Int J Appl Ceram Technol. 2012;9:507–16.

    CAS  Google Scholar 

  • Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, et al. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater. 2008;86:217–27.

    Google Scholar 

  • Gomide VS, Zonari A, Ocarino NM, Goes AM, Serakides R, Pereira MM. In vitro and in vivo osteogenic potential of bioactive glass-PVA hybrid scaffolds colonized by mesenchymal stem cells. Biomed Mater. 2012;7: Article 015004.

    Google Scholar 

  • Gomez-Romero P, Sanchez C, editors. Functional hybrid materials. Weinheim: Wiley-VCH; 2004.

    Google Scholar 

  • Gorustovich AA, Roether JA, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B. 2010;16:199–207.

    CAS  Google Scholar 

  • Gross KA, Chai CS, Kannangara GSK, Ben-Nissan B, Hanley L. Thin hydroxyapatite coatings via sol–gel synthesis. J Mater Sci Mater Med. 1998;9:839–43.

    CAS  Google Scholar 

  • Guo L, Feng W, Liu X, Lin C, Li B, Qiang Y. Sol-gel synthesis of antibacterial hybrid coatings on titanium. Mater Lett. 2015;160:448–51.

    Google Scholar 

  • Gupta R, Kumar A. Bioactive materials for biomedical applications using sol–gel technology. Biomed Mater. 2008;3: Article 034005.

    Google Scholar 

  • Habazaki H, Kimura T, Aoki Y, Tsuji E, Yano T. Highly enhanced corrosion resistance of stainless steel by sol–gel layer by- layer aluminosilicate thin coatings. J Electrochem Soc. 2014;161:57–61.

    Google Scholar 

  • Hak DJ. The use of osteoconductive bone graft substitutes in orthopaedic trauma. J Am Acad Orthop Surg. 2007;15:525–36.

    Google Scholar 

  • Haque S, Shadab M, Fazil M, Jasjeet K, Sahni JK, Baboota S, Dang S, Ali J. Role of chitosan biomaterials in drug delivery systems: a patent perspective. Recent Pat Mater Sci. 2011;4:209–23.

    CAS  Google Scholar 

  • Hayashi K, Uenoyama K, Mashima T, Sugioka Y. Remodelling of bone around hydroxyapatite and titanium in experimental osteoporosis. Biomaterials. 1994;15:11–6.

    CAS  Google Scholar 

  • He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem. 2008;80:9597–603.

    CAS  Google Scholar 

  • Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.

    CAS  Google Scholar 

  • Hench LL. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967–78.

    CAS  Google Scholar 

  • Hench LL. Bioactive materials for gene control. In: Hench LL, Jones JR, Fenn MB, editors. New materials and technologies for healthcare. Singapore: World Scientific; 2011. p. 25–48.

    Google Scholar 

  • Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.

    Google Scholar 

  • Heness G, Ben-Nissan B. Innovative bioceramics. Mater Forum. 2004;27:104–14.

    CAS  Google Scholar 

  • Hoffmann B, Volkmer E, Kkokott A, Weber M, Hhamisch S, Sschieker M, Mutschler W, Ziegler G. A new biodegradable bone wax substitute with the potential to be used as a bone filling material. J Mater Chem. 2007;17:4028–33.

    CAS  Google Scholar 

  • Hoppe A, Güldal NS, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–74.

    CAS  Google Scholar 

  • Hornez JC, Chai F, Blanchemain N, Lefebre A, Descamps M, Hildebrand F. Biocompatibility improvement of pure hydroxyapatite (Ha) with different porosity. Key Eng Mater. 2007;330:927–30.

    Google Scholar 

  • Huang H-H, Orler B, Wilkes GL. Ceramers: hybrid materials incorporating polymeric/oligomeric species with inorganic glasses by a sol–gel process. 2. Effect of acid content on the final properties. Polym Bull. 1985;14:557–64.

    CAS  Google Scholar 

  • Hunter GK, Goldberg HA. Modulation of crystal-formation by bone phosphoproteins – role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J. 1994;302:175–9.

    CAS  Google Scholar 

  • Iler RK. The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry. New York: Wiley; 1979. p. 753–61: Mammals: man.

    Google Scholar 

  • Im KH, Lee SB, Kim K-M, Lee Y-K. Improvement of bonding strength to titanium surface by sol–gel derived hybrid coating of hydroxyapatite and titania by sol–gel process. Surf Coat Technol. 2007;202:1135–8.

    CAS  Google Scholar 

  • International Standard 10993–5. Biological evaluation of medical devices – part 5: tests for cytotoxicity: in vitro methods. 2009, International Organization for Standardization. Geneva. Switzerland. http://www.iso.org/obp/2009.

  • Isaac J, Nohra J, Lao J, Jallot E, Nedelec JM, Berdal A, Sautier J-M. Effects of strontium doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cells Mater. 2011;21:130–43.

    CAS  Google Scholar 

  • Jokinen M, Pätsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB. Influence of sol and surface properties on in vitro bioactivity of sol–gel-derived TiO2 and TiO2–SiO2 films deposited by dip-coating method. J Biomed Mater Res. 1998;42:295–302.

    CAS  Google Scholar 

  • Jones JR. Reprint of: review of bioactive glass: from Hench to hybrids. Acta Biomater. 2013;9:4457–86 and 2015;23:S53–82.

    CAS  Google Scholar 

  • Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    CAS  Google Scholar 

  • Jones JR, Poologasundarampillai G, Atwood RC, Bernard D, Lee PD. Nondestructive quantitative 3D analysis for the optimisation of tissue scaffolds. Biomaterials. 2007;28:1404–13.

    CAS  Google Scholar 

  • Jones JR, Lin S, Yue S, Lee PD, Hanna JV, Smith ME, Newport RJ. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc Inst Mech Eng H. 2010;224:1373–87.

    CAS  Google Scholar 

  • Judeinstein P, Sanchez C. Hybrid organic–inorganic materials: a land of multidisciplinarity. J Mater Chem. 1996;6:511–25.

    CAS  Google Scholar 

  • Juhasz JA, Best SM, Auffret AD, Bonfield W. Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med. 2008;19:1823–9.

    CAS  Google Scholar 

  • Jun S-H, Lee E-J, Jang T-S, Kim H-E, Jang J-H, Koh Y-H. Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering. J Mater Sci Mater Med. 2013;24:773–82.

    CAS  Google Scholar 

  • Kaito T, Mukai Y, Nishikawa M, Ando W, Yoshikawa H, Myoui A. Dual hydroxyapatite composite with porous and solid parts: experimental study using canine lumbar interbody fusion model. J Biomed Mater Res B Appl Biomater. 2006;78:378–84.

    Google Scholar 

  • Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T. Bioactivity and mechanical properties of polydimethylsiloxane (PDMS)-CaO-SiO2 hybrids with different PDMS contents. J Sol–Gel Sci Technol. 2001a;21:75–81.

    CAS  Google Scholar 

  • Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T. Apatite-forming ability and mechanical properties of polydimethylsiloxane (PDMS)-TiO2 hybrid treated with hot water. In: Brown S, Clark I, Williams P, editors. Bioceramics, vol. 14. Zürich: Trans. Tech. Publishers; 2001b. p. 633–6.

    Google Scholar 

  • Kamitakahara M, Shineha R, Kawashita M, Miyata N, Kokubo T, Nakamura T. Flexible poly(tetramethylene oxide) (PTMO)- TiO2 hybrid with apatite-forming ability. In: Ben-Nissan B, Sher D, Walsh W, editors. Bioceramics, vol. 15. Zürich: Trans. Tech. Publishers; 2002. p. 155–8.

    Google Scholar 

  • Karlsson KH, Froberg K, Ringbom T. A structural approach to bone adhering of bioactive glasses. J Non-Cryst Solids. 1989;112:69–72.

    Google Scholar 

  • Karpov M, Laczka M, Leboy PS, Osyczka AM. Sol–gel bioactive glasses support both osteoblast and osteoclast formation from human bone marrow cells. J Biomed Mater Res A. 2008;84A:718–26.

    CAS  Google Scholar 

  • Kashyap N, Kumar N, Ravi Kumar MNV. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst. 2005;22:107–50.

    CAS  Google Scholar 

  • Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials. 2003;24:3247–53.

    CAS  Google Scholar 

  • Keegan M, Learmonth ID, Case CP. Orthopaedic metals and their potential toxicity in the arthroplasty patient. A review of current knowledge and future strategies. J Bone Joint Surg B. 2007;89:567–73.

    CAS  Google Scholar 

  • Kim HK, Himeno T, Kawashita M, Lee JH, Kokubo T, Nakamura T. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid. J Biomed Mater Res A. 2003;67A:1305–9.

    CAS  Google Scholar 

  • Kinov P, Tivchev P. Evidence linking elevated oxidative stress and aseptic loosening of hip arthroplasty. In: Fokter DS, editor. Recent advances in arthroplasty. Open access Publisher: InTech, Rijeka, Croatia; 2012. p. 295–318. http://www.intechopen.com.

  • Kizuki T, Takadama H, Matsushita T, Nakamura T, Kokubo T. Preparation of bioactive Ti metal surface enriched with calcium ions by chemical treatment. Acta Biomater. 2010;6:2836–42.

    CAS  Google Scholar 

  • Koh MY, Ohtsuki C, Miyazaki T. Modification of polyglutamic acid with silanol groups and calcium salts to induce calcification in a simulated body fluid. J Biomater Appl. 2011;25:581–94.

    CAS  Google Scholar 

  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials. 2006;27:2907–15.

    CAS  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T. Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990;24:721–34.

    CAS  Google Scholar 

  • Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    CAS  Google Scholar 

  • Lao J, Jallot E, Nedelec J-M. Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications. Chem Mater. 2008;20:4969–73.

    CAS  Google Scholar 

  • Le H, Natesan K, Pranti-Haran S. Mechanical property and biocompatibility of co-precipitated nanohydroxyapatite–gelatine composites. J Adv Ceram. 2015;4(3):237–43.

    CAS  Google Scholar 

  • Lee E-J, Kim H-E. Accelerated bony defect healing by chitosan/silica hybrid membrane with localized bone morphogenetic protein-2 delivery. Mater Sci Eng C. 2016;59:339–45.

    CAS  Google Scholar 

  • Lee SH, Shin H. Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev. 2007;59:339–59.

    CAS  Google Scholar 

  • Lee E-J, Shin D-S, Kim H-E, Kim H-W, Koh Y-H, Jang J-H. Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials. 2009;30:743–50.

    CAS  Google Scholar 

  • Lee JH, El-Fiqi A, Han CM, Kim HW. Physically-strengthened collagen bioactive nanocomposite gels for bone: a feasibility study. Tissue Eng Regen Med. 2015;12:1–8.

    Google Scholar 

  • Lei B, Chen XF, Wang YJ, Zhao NR, Du C, Fang LM. Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. J Biomed Mater Res A. 2010;94A:1091–9.

    CAS  Google Scholar 

  • Lei B, Shin K-H, Noh D-Y, Koh Y-H, Choi W-Y, Kim H-E. Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly(e-caprolactone) polymer for bonetissue regeneration. J Biomed Mater Res B. 2012;100B:967–75.

    CAS  Google Scholar 

  • Li P, de Groot K. Calcium phosphate formation within sol–gel prepared titania in vitro and in vivo. J Biomed Mater Res. 1993;27:1495–500.

    CAS  Google Scholar 

  • Li R, Clark AE, Hench LL. An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater. 1991;2:231–9.

    CAS  Google Scholar 

  • Li P, Kangasniemi I, de Groot K, Kokubo T. Bonelike hydroxyapatite induction by a gel-derived titania on a titanium substrate. J Am Ceram Soc. 1994;77:1307–12.

    CAS  Google Scholar 

  • Li R, Nie K, Shen X, Wang S. Biodegradable polyester hybrid nanocomposites containing titanium dioxide network and poly(ε-caprolactone): synthesis and characterization. Mater Lett. 2007;61:1368–71.

    CAS  Google Scholar 

  • Li X, Qu F, Li W, Lin H, Jin Y. Synthesis of hierarchically porous bioactive glasses using natural plants as template for bone tissue regeneration. J Sol–gel Sci Technol. 2012;63:416–24.

    CAS  Google Scholar 

  • Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR. Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem. 2009;19:1276–82.

    CAS  Google Scholar 

  • Liu DM, Troczynski T, Tseng WJ. Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterials. 2001;22:1721–30.

    CAS  Google Scholar 

  • Livage J, Coradin T, Roux C. Bioactive sol–gel hybrids. Weinheim: Wiley-VCH; 2004. p. 387–404.

    Google Scholar 

  • Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. Tissue Eng Part B. 2009;15:353–70.

    CAS  Google Scholar 

  • Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6:1794–805.

    CAS  Google Scholar 

  • Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R, Smith ME, Stevens MM, Jones JR. Silica–gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater. 2010;20:3835–45.

    CAS  Google Scholar 

  • Mahony O, Yue S, Turdean-Ionescu C, Hanna JV, Smith ME, Lee PD, Jones JR. Silica–gelatin hybrids for tissue regeneration: inter-relationships between the process variables. J Sol–gel Sci Technol. 2014;69:288–98.

    CAS  Google Scholar 

  • Manivasagam G, Dhinasekaran D, Rajamanickam A. Biomedical implants: corrosion and its prevention – a review. Recent Pat Corros Sci. 2010;2:40–54.

    CAS  Google Scholar 

  • Mansour SF, El-dek SI, Ahmed MA, Abd-Elwahab SM, Ahmed MK. Effect of preparation conditions on the nanostructure of hydroxyapatite and brushite phases. Appl Nanosci. 2015. doi:10.1007/s13204-015-0509-4. Published online 16 Nov 2015 onto Springerlink.com.

    Article  Google Scholar 

  • Manzano M, Arcos D, Delgado MR, Ruiz E, Gil FJ, Vallet-Regi M. Bioactive star gels. Chem Mater. 2006;18:5696–703.

    CAS  Google Scholar 

  • Marques AC, Almeida RM, Thiema A, Wang S, Falk MM, Jain H. Sol–gel derived glass scaffold with high pore interconnectivity and enhanced bioactivity. J Mater Res. 2009;24:3495–502.

    CAS  Google Scholar 

  • Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME, Jones JR. Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos Trans R Soc A. 2012;370:1422–43.

    CAS  Google Scholar 

  • Marycz K., Krzak J., Urbanski W., Pezowicz C. In vitro and in vivo evaluation of sol–gel derived TiO2 coatings based on a variety of precursors and synthesis conditions. J Nanomater. 2014; Article ID 350579, 14 pages.

    Google Scholar 

  • Marycz K, Smieszek A, Grzesiak J, SiudziNska A, Marwdziak M, Donesz-Sikorska A, Krzak J. The osteogenic properties of multipotent mesenchymal stromal cells in cultures on TiO2 sol–gel-derived biomaterial. BioMed Res Int. Hindawi Publishing Corporation, New York; 2015; Article ID 651097, 11 pages. doi:10.1155/2015/651097.

    Google Scholar 

  • Masmoudi M, Assoul M, Wery M, Abdelhedi R, El Halouani F, Monteil G. Friction and wear behaviour of cp Ti and Ti6Al4V following nitric acid passivation. Appl Surf Sci. 2006;253:2237–43.

    CAS  Google Scholar 

  • Mathews CK, van Holde KE. Biochemistry. RewoodCity: Benjamin/Cummings; 1990. p. 183–4.

    Google Scholar 

  • Matsumoto A, Yamaji K, Kawanami M, Kato H. Effect of aging on bone formation induced by recombinant human bone morphogenetic protein-2 combined with fibrous collagen membranes at subperiosteal sites. J Periodontal Res. 2001;36:175–82.

    CAS  Google Scholar 

  • Milella E, Cosentino F, Licciulli A, Massaro C. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol–gel process. Biomaterials. 2001;22:1425–31.

    CAS  Google Scholar 

  • Miller PR, Ovsianikov A, Koroleva A, Gittard SD, Chichkov BN, Narayan R. Medical applications of zirconium oxide hybrid materials. J Am Ceram Soc Bull. 2011;90:24–9.

    CAS  Google Scholar 

  • Minaberry Y, Jobbagy M. Macroporous bioglass scaffolds prepared by coupling sol–gel with freeze drying. Chem Mater. 2011;23:2327–32.

    CAS  Google Scholar 

  • Mitchell JC, Musanje L, Ferracane JL. Biomimetic dentin desensitizer based on nano-structured bioactive glass. Dent Mater. 2011;27(3):86–93.

    Google Scholar 

  • Miyata N, Fuke K, Chen Q, Kawashita M, Kokubo T, Nakamura T. Apatite-forming ability and mechanical properties of PTMO-modified CaO-SiO2 hybrids prepared by sol–gel processing: effect of CaO and PTMO contents. Biomaterials. 2002a;23:3033–40.

    Google Scholar 

  • Miyata N, Kamitakahara M, Kawashita M, Kokubo T, Nakamura T. Mechanical properties of bioactive PDMS-CaOSiO2-TiO2 and PTMO-CaO-TiO2 hybrids soaked in a simulated body fluid. In: Ben-Nissan B, Sher D, Walsh W, editors. Bioceramics, vol. 15. Zürich: Trans. Tech. Publishers; 2002b. p. 943–6.

    Google Scholar 

  • Miyazaki T. Design of bone-integrating organic–inorganic composite suitable for bone repair. Front Biosci (Elite Ed). 2013;E5:333–40.

    CAS  Google Scholar 

  • Moimas L, Biasotto M, Di LR, Olivo A, Schmid C. Rabbit pilot study on the resorbability of three-dimensional bioactive glass fibre scaffolds. Acta Biomater. 2006;2:191–9.

    Google Scholar 

  • Moroni A, Pegreffi F, Cadossi M, Hoang-Kim A, Lio V, Giannini S. Hydroxyapatite-coated external fixation pins. Expert Rev Med Devices. 2005;2:465–71.

    CAS  Google Scholar 

  • Montazeri N, Jahandideh R, Biazar E. Synthesis of fluorapatite-hydroxyapatite nanoparticles and toxicity investigations. Int J Nanomedicine. 2011;6:197–201.

    CAS  Google Scholar 

  • Motomiya M, Ito M, Takahata M, Kadoya K, Irie K, Abumi K, Minali A. Effect of Hydroxyapatite porous characteristics on healing outcomes in rabbit posterolateral spinal fusion model. Eur Spine J. 2007;16:2215–24.

    Google Scholar 

  • Muhonen V, Kujala S, Vuotikka A, Ääritalo V, Peltola T, Areva S, Närhi T, Tuukkanen J. Biocompatibility of sol–gel-derived titania–silica coated intramedullary NiTi nails. Acta Biomater. 2009;5:785–93.

    CAS  Google Scholar 

  • Nandi SK, Kundu B, Ghosh SK, De DK, Basu D. Efficacy of nanohydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci. 2008a;9:183–91.

    Google Scholar 

  • Nandi SK, Ghosh SK, Kundu B, De DK, Basu D. Evaluation of new porous beta-tricalcium phosphate ceramic as bone substitute in goat model. Small Rumin Res. 2008b;75:144–53.

    Google Scholar 

  • Nguyen HQ, Deporter DA, Pilliar RM, Valiquette N, Yakubovich R. The effect of sol–gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials. 2004;25:865–76.

    CAS  Google Scholar 

  • Niu Z, Li Z, LI L, Hou R. Optimization of process parameters based on ANN when synthesizing nano-size hydroxyapatite using sol–gel method. In: Proceedings of the 4th International Conference on Nano/Micro engineered and Molecular Systems; 2009 Jan 5–8; Shenzen. p. 420–3.

    Google Scholar 

  • O’Brien FJ, Harley BA, Yannas IV, Gibson L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials. 2004;25:1077–86.

    Google Scholar 

  • Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27:5892–900.

    CAS  Google Scholar 

  • Pal K, Banthia AK, Majumdar DK. Polymeric hydrogels: characterization and biomedical applications – a mini review. Des Monomers Polym. 2009;12:197–220.

    CAS  Google Scholar 

  • Peltola T, Jokinen M, Rahiala H, Pätsi M, Heikkila J, Kangasniemi I, Yli-Urpo A. Effect of aging time of sol on structure and in vitro calcium phosphate formation of sol–gel-derived titania films. J Biomed Mater Res. 2000;51:200–8.

    CAS  Google Scholar 

  • Peltola T, Äärital V, Haltia AM, Vehviläinen M, Areva S, Jokinen M, Yli-Urpo A. In vitro bioactivity of sol–gel-derived silica fiber and P(L/D,L)LA composites. In: Key engineering materials, vols. 240–242, Bioceramics, vol. 15. Zürich: Trans. Tech. Publishers; 2003. p. 159–62.

    Google Scholar 

  • Pereira MM, Clark AE, Hench LL. Calcium-phosphate formation on sol–gel derived bioactive glasses in-vitro. J Biomed Mater Res. 1994;28:693–8.

    CAS  Google Scholar 

  • Pereira MM, Clark AE, Hench LL. Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc. 1995;78:2463–8.

    CAS  Google Scholar 

  • Pereira MM, Jones JR, Orefice RL, Hench LL. Preparation of bioactive glass–polyvinyl alcohol hybrid foams by the sol–gel method. J Mater Sci Mater Med. 2005a;16:1045–50.

    Google Scholar 

  • Pereira MM, Jones JR, Hench LL. Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering. Adv Appl Ceram. 2005b;104:35–42.

    CAS  Google Scholar 

  • Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R. Novel biodegradable chitosan-gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J. 2010;158:353–61.

    CAS  Google Scholar 

  • Peters K, Schmidt H, Unger RE, Kamp G, Prols F, Berger BJ, Kirkpatrick CJ. Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Mol Cell Biochem. 2005;270:157–66.

    CAS  Google Scholar 

  • Pierre AC. Introduction to sol–gel processing. In Klein L, editor. The Kluwer International Series in Sol-Gel Processing: Technology and Application, e-Consulting. Kluwer Academic Publisher, Boston, Dordrecht, London; 1998, p 394.

    Google Scholar 

  • Pierre AC. History of aerogels. In: Aegerter MA, Koebel MM, editors. Aerogel handbook. Springer New York Dordrecht Heidelberg, London; 2011. p. 1–18, ISBN 978-1-4419-7477-8.

    Google Scholar 

  • Poologasundarampillai G, Ionescu C, Tsigkou O, Murugesan M, Hill RG, Stevens MM, Hanna JV, Smith ME, Jones JR. Synthesis of bioactive class II poly([gamma]-glutamic acid)/silica hybrids for bone regeneration. J Mater Chem. 2010;20:8952–61.

    CAS  Google Scholar 

  • Poologasundarampillai G, Yu B, Jones JR, Kasuga T. Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter. 2011;7:10241–51.

    CAS  Google Scholar 

  • Poologasundarampillai G, Yu B, Tsigkou O, Valliant EM, Yue S, Lee PD, Hamilton RW, Stevens MM, Kasuga T, Jones JR. Bioactive silica–poly(c-glutamic acid) hybrids for bone regeneration: effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter. 2012;8:4822–8432.

    CAS  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25:1539–60.

    CAS  Google Scholar 

  • Puvvada N, Panigrahi PK, Kalita H, Chakraborty KR, Pathak A. Effect of temperature on morphology of triethanolamine-assisted synthesized hydroxyapatite nanoparticles. Appl Nanosci. 2013;3:203–9.

    CAS  Google Scholar 

  • Ragel CV, Vallet-Regi M, Rodrıguez-Lorenzo LM. Preparation and in vitro bioactivity of hydroxyapatite/solgel glass biphasic material. Biomaterials. 2002;23:1865–72.

    CAS  Google Scholar 

  • Rainer A, Giannitelli SM, Abbruzzese F, Traversa E, Licoccia S, Trombetta M. Fabrication of bioactive glass-ceramic foams mimicking human bone portions for regenerative medicine. Acta Biomater. 2008;4:362–9.

    CAS  Google Scholar 

  • Ramila A, Balas F, Vallet-Regi M. Synthesis routes for bioactive sol–gel glasses: alkoxides versus nitrates. Chem Mater. 2002;14:542–8.

    CAS  Google Scholar 

  • Ren L, Tsuru K, Hayakawa S, Osaka A. Novel approach to fabricate porous gelatin-siloxane hybrids for bone tissue engineering. Biomaterials. 2002;23:4765–73.

    CAS  Google Scholar 

  • Ren L, Wang J, Yang F-Y, Wang L, Wang D, Wang T-X, Tian M-M. Fabrication of gelatin–siloxane fibrous mats via sol–gel and electrospinning procedure and its application for bone tissue engineering. Mater Sci Eng C. 2010;30:437–44.

    CAS  Google Scholar 

  • Rhee S-H. Effect of calcium salt content in the poly(ε-caprolactone)/silica hybrid on the nucleation and growth behavior of apatite layer. In: Key engineering materials, vols. 240–242, Bioceramics vol. 15. Zürich: Trans. Tech. Publishers; 2003. p. 171–90.

    Google Scholar 

  • Rhee S-H, Hwang M-H, Choi J-Y. Effect of silica content in PMMA/silica hybrids containing calcium slat on calcium phosphate formation and cell responses. In: Key engineering materials. Bioceramics 15, vols. 240–242. Zürich: Trans. Tech. Publishers; 2003. p. 183–6.

    Google Scholar 

  • Rhee SH, Lee YK, Lim BS. Evaluation of a novel poly(epsilon-caprolactone)-organosiloxane hybrid material for the potential application as a bioactive and degradable bone substitute. Biomacromolecules. 2004;5:1575–9.

    CAS  Google Scholar 

  • Ribeiro TJ, de Lima OJ, Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ. Sol–gel as methodology to obtain bioactive materials. Anais Da Academia Brasileira De Ciencias. 2014;86:27–36.

    CAS  Google Scholar 

  • Richard A, Margaritis A. Poly(glutamic acid) for biomedical applications. Crit Rev Biotechnol. 2001;21:219–32.

    CAS  Google Scholar 

  • Ruiz-Hitzky E, Ariga K, Lvov Y, editors. Bio-inorganic hybrid nanomaterials; strategies, syntheses, characterization and applications. Weinheim: Wiley-VCH; 2008.

    Google Scholar 

  • Sabri F, Cole JA, Scarbrough MC, Leventis N. Investigation of polyurea-crosslinked silica aerogels as a neuronal scaffold: a pilot study. Plos ONE. 2012;7: Article e33242, 1–7.

    Google Scholar 

  • Salarian M, Xu WZ, Wang Z, Sham T-K, Charpentier PA. Hydroxyapatite − TiO2-based nanocomposites synthesized in supercritical CO2 for bone tissue engineering: physical and mechanical properties. ACS Appl Mater Interfaces. 2014;6:16918–31.

    CAS  Google Scholar 

  • Salinas AJ, Vallet-Regí M, Toledo-Fernández JA, Mendoza-Serna R, Piñero M, Esquivias L, Ramírez-Castellanos J, González-Calbet JM. Nanostructure and bioactivity of hybrid aerogels. Chem Mater. 2009;21:41–7.

    CAS  Google Scholar 

  • Samani S, Hossainalipour SM, Tamizifar M, Rezaie HR. In vitro antibacterial evaluation of sol–gel derived Zn-, Ag-, and (Zn + Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus. J Biomed Mater Res A. 2013;101A:222–30.

    CAS  Google Scholar 

  • Samuneva B, Djambaski P, Kashchieva E, Chernev G, Kabaivanova L, Emanuilova E, Salvado IMM, Fernandes MHV, Wu A. Sol–gel synthesis and structure of silica hybrid biomaterials. J Non-Cryst Solids. 2008;354:733–40.

    CAS  Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.

    CAS  Google Scholar 

  • Santos MH, Valerio P, Goes AM, Leite MF, Heneine LG, Mansur HS. Biocompatibility evaluation of hydroxyapatite/collagen nanocomposites doped with Zn+2. Biomed Mater. 2007;2:135–41.

    CAS  Google Scholar 

  • Saravanapavan P, Jones JR, Pryce RS, Hench LL. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO–P2O5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O). J Biomed Mater Res A. 2003;66A:110–9.

    CAS  Google Scholar 

  • Scherer GW, Brinker CJ. Sol–gel science. New York: Academic; 1990.

    Google Scholar 

  • Schmidt H. New type of non-crystalline solids between inorganic and organic materials. J NonCryst Solids. 1985;73:681–91.

    CAS  Google Scholar 

  • Semenza GL. Life with oxygen. Science. 2007;318:62–4.

    CAS  Google Scholar 

  • Shadjou N, Hasanzadeh M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: recent progress. Mater Sci Eng C. 2015;55:401–9.

    CAS  Google Scholar 

  • Shigaku S, Katsuyuki F. Beta-tricalcium phosphate as a bone graft substitute. Jikeikai Med J. 2005;52:47–54.

    Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Fernandes MH. In vitro cytocompatibility of MG63 cells on chitosan–organosiloxane hybrid membranes. Biomaterials. 2005;26:485–93.

    CAS  Google Scholar 

  • Shirosaki Y, Okayama T, Tsuru K, Hayakawa S, Osaka A. Synthesis and cytocompatibility of porous chitosan–silicate hybrids for tissue engineering scaffold application. Chem Eng J. 2008;137:122–8.

    CAS  Google Scholar 

  • Shirosaki Y, Tsuru K, Hayakawa S, Osaka A, Lopes MA, Santos JD, Costa MA, Fernandes MH. Physical, chemical and in vitro biological profile of chitosan hybrid membrane as a function of organosiloxane concentration. Acta Biomater. 2009;5:346–55.

    CAS  Google Scholar 

  • Shirosaki Y, Osaka A, Tsuru K, Hayakawa S. Inorganic–organic sol–gel hybrids. Hoboken: Wiley; 2012. p. 131, 139–158.

    Google Scholar 

  • Siqueira RL, Peitl O, Zanotto ED. Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater Sci Eng C. 2011;31:983–91.

    CAS  Google Scholar 

  • Skipper LJ, Sowrey FE, Pickup DM, Drake KO, Smith ME, Saravanapavan P, Hench LL, Newport RJ. The structure of a bioactive calcia-silica sol–gel glass. J Mater Chem. 2005;15:2369–74.

    CAS  Google Scholar 

  • Śmieszek A, Donesz-Sikorska A, Grzesiak J, Krzak J, Marycz K. Biological effects of sol–gel derived ZrO2 and SiO2/ZrO2 coatings on stainless steel surface – in vitro model using mesenchymal stem cells. J Biomater Appl. 2014;29:699–714.

    Google Scholar 

  • Stöber W. Controlled growth of monodisperse silica spheres in micron size range. J Colloid Interface Sci. 1968;26:62–9.

    Google Scholar 

  • Sugino A, Miyazaki T, Ohtsuki C. Apatite-forming ability of polyglutamic acid hydrogels in a body-simulating environment. J Mater Sci Mater Med. 2008;19:2269–74.

    CAS  Google Scholar 

  • Toledo-Fernández JA, Mendoza-Serna R, Morales V, de la Rosa-Fox N, Piñero M, Santos A, Esquivias L. Bioactivity of wollastonite/aerogels composites obtained from a TEOS–MTES matrix. J Mater Sci Mater Med. 2008;19:2207–13.

    Google Scholar 

  • Tsigkou O, Pomerantseva I, Spencer JA, Redondo PA, Hart AR, O’Doherty E, Lin Y, Friedrich CC, Daheron L, Lin CP, Sundback CA, Vacanti JP, Neville C. Engineered vascularized bone grafts. Proc Natl Acad Sci U S A. 2010;107:3311–6.

    CAS  Google Scholar 

  • Tsuru K, Ohtsuki C, Osaka A, Iwamoto T, Mackenzie JD. Bioactivity of sol–gel derived organically modified silicates. J Mater Sci Mater Med. 1997;8:157–61.

    Google Scholar 

  • Tsuru K, Hayakawa S, Ohtsuki C, Osaka A. Bioactive gel coatings derived from vinyltrimethoxysilane. J Sol–Gel Sci Technol. 1998;13:237–40.

    Google Scholar 

  • Tsuru K, Aburatani Y, Yabuta T, Hayakawa S, Ohtsuki C, Osaka A. Synthesis and in vitro behavior of organically modified silicate containing Ca ions. J Sol-Gel Sci Technol. 2001;21:89–96.

    CAS  Google Scholar 

  • Tsuru K, Hayakawa S, Osaka A. Synthesis of bioactive and porous organic–inorganic hybrids for biomedical applications. J Sol–Gel Sci Technol. 2004;32:201–5.

    CAS  Google Scholar 

  • Uchida M, Kim H-M, Kokubo T, Nakamura T. Apatite-forming ability of titania gels with different structures. In: Ohgushi H, Hastings GW, Yoshikawa T, editors. Bioceramics vol. 12, proceedings of the 12th international symposium on ceramics in medicine, Nara, Japan, October 8–11, 1999. Singapore: World Scientific; 1999. p. 149–52.

    Google Scholar 

  • Valenzuela F, Covarrubias C, Martınez C, Smith P, Dıaz-Dosque M, Yazdani-Pedram M. Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. J Biomed Mater Res B. 2012;100B:1672–82.

    CAS  Google Scholar 

  • Valerio P, Guimaraes MHR, Pereira MM, Leite MF, Goes AM. Primary osteoblast cell response to sol–gel derived bioactive glass foams. J Mater Sci Mater Med. 2005;16:851–6.

    CAS  Google Scholar 

  • Vallet-Regi M, Salinas AJ, Arcos D. From the bioactive glasses to the star gels. J Mater Sci Mater Med. 2006;17:1011–7.

    CAS  Google Scholar 

  • Vallet-Regi M, Izquierdo-Barba I, Colilla M. Structure and functionalization mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos Trans R Soc A. 2012;370:1400–21.

    CAS  Google Scholar 

  • Valliant EM, Jones JR. Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter. 2011;7:5083–95.

    CAS  Google Scholar 

  • Valliant EM, Romer F, Wanga D, McPhail DS, Smith ME, Hanna JV, Jones JR. Bioactivity in silica/poly(c-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater. 2013;9:7662–71.

    CAS  Google Scholar 

  • Viitala R, Areva S, Jokinene M, Koshinen M. About interactions between sol–gel derived silica, titania and living organisms. In: Sol–gel methods for materials processing, Series NATO science for peace and security series C: environmental security. Springer, Dordrecht, The Netherlands; 2008. p. 251–68.

    Google Scholar 

  • Vijayalakshmi U, Rajeswari S. Preparation and characterization of microcrystalline hydroxyapatite using sol gel method. Trends Biomater Artif Organs. 2006;19:57–62.

    Google Scholar 

  • Wang S, Jain H. High surface area nanomacroporous bioactive glass scaffold for hard tissue engineering. J Am Ceram Soc. 2010;93:3002–5.

    CAS  Google Scholar 

  • Wang X-X, Hayakawa S, Tsuru K, Osaka A. Improvement of bioactivity of H2O2/TaC15-treated titanium after subsequent heat treatments. J Biomed Mater Res. 2000;52:171–6.

    CAS  Google Scholar 

  • Wang X, Li X, Ito A, Sogo Y. Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater. 2011;7:3638–44.

    CAS  Google Scholar 

  • Wang X, Zhu J, Yin L, Liu S, Zhang X, Ao Y, Chen H. Fabrication of electrospun silica–titania nanofibers with different silica content and evaluation of the morphology and osteoinductive properties. J Biomed Mater Res A. 2012;100A:3511–7.

    CAS  Google Scholar 

  • Weiss P, Fatimi A. Injectable composites for bone repair. In: Biomedical composites. Ambrosio L editor. Woodhead Publishing Ltd. Cambridge, England; 2009. p. 255–75. Chap 11.

    Google Scholar 

  • Wheeler DL, Eschbach EJ, Hoellrich RG, Montfort MJ, Chamberland DL. Assessment of resorbable bioactive material for grafting of critical-size cancellous defects. J Orthop Res. 2000;18:140–8.

    CAS  Google Scholar 

  • Williams DF. On the nature of biomaterials. Biomaterials. 2009;30:5897–909.

    CAS  Google Scholar 

  • Willis SL, Court JL, Redman RP, Wang J-H, Leppard SW, O’Bryne VJ, Small SA, Lewis AL, Jones SA. A novel phosphorylcholine-coated contact lens for extended wear use. Biomaterials. 2001;22:3261–72.

    CAS  Google Scholar 

  • Wu J-M, Hayakawa S, Tsuru K, Osaka A. Crystallization of anatase from amorphous titania in hot water and in vitro biomineralization. J Ceram Soc Jpn. 2002;110:78–80.

    CAS  Google Scholar 

  • Wu C, Miron R, Sculean A, Kaskel S, Doert T, Schulze R, Zhang Y. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials. 2011a;32:7068–78.

    CAS  Google Scholar 

  • Wu C, Luo Y, Cuniberti G, Xiao Y, Gelinsky M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 2011b;7:2644–50.

    CAS  Google Scholar 

  • Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M, Xiao Y. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012;33:2076–85.

    CAS  Google Scholar 

  • Xu C, Su P, Chen X, Meng Y, Yu W, Xiang AP, Wang Y. Biocompatibility and biomimetic Bioglass-collagen-phosphatidylserine composite scaffolds for bone osteogenesis of tissue engineering. Biomaterials. 2011;32:1051–508.

    CAS  Google Scholar 

  • Yabuta T, Tsuru K, Hayakawa S, Osaka A. Synthesis of bioactive organic–inorganic hybrids with 3-methacryloxypropyltrimethoxysilane. J Sol–Gel Sci Technol. 2000;19:745–8.

    CAS  Google Scholar 

  • Yabuta T, Bescher EP, Mackenzie JD, Tsuru K, Hayakawa S, Osaka A. Synthesis of PDMS-based porous materials for biomedical applications. J Sol–Gel Sci Technol. 2003;26:1219–22.

    CAS  Google Scholar 

  • Yin W, Rubenstein DA. Biomedical applications of aerogels. In: Aegerter MA, Keventis N, Koebel MM, editors. Aerogels handbook. New York: Springer; 2011. p. 683–94.

    Google Scholar 

  • Yin W, Venkitachalam SM, Jarrett E, Staggs S, Leventis N, Lu HB, Rubenstein DA. Biocompatibility of surfactant-templated polyurea–nanoencapsulated macroporous macroporous silica aerogels with plasma platelets and endothelial cells. J Biomed Mater Res A. 2010;92:1431–9.

    Google Scholar 

  • Young RA. Biological apatite vs hydroxyapatite at the atomic level. Clin Orthop Relat Res. 1975;113:249–62.

    CAS  Google Scholar 

  • Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR. Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir. 2012;28:17465–76.

    CAS  Google Scholar 

  • Zarkoob H, Ziaei-Rad S, Fathi M, Dadkhah H. Synthesis, characterization and bioactivity evaluationof porous barium titanate with nanostructured hydroxyapatite coating for biomedical application. Adv Eng Mater. 2012;14:B322–9.

    Google Scholar 

  • Zhang HZ, Kamiya T, Hayashi T, Tsuru K, Deguchi K, Lukic V, Tsuchiya A, Yamashita T, Hayakawa S, Ikeda Y, Osaka A, Abe K. Gelatin-siloxane hybrid scaffolds with vascular endothelial growth factor induces brain tissue regeneration. Curr Neurovasc Res. 2008;5:112–7.

    CAS  Google Scholar 

  • Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, Hup M, Hupa L. Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A. 2010;93A:475–83.

    CAS  Google Scholar 

  • Zhang H, Ding J, Chen X, Zhang H, Liu X. Combination control, nanomagnetism, and biomedical applications of inorganic multicomponent hybrid nanomaterials. Singapore: Pan Stanford Publishing; 2012. p. 421–54.

    Google Scholar 

  • Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8:607–26.

    Google Scholar 

Download references

Acknowledgments

The author is very grateful to previous researchers, and to the publisher, who published their article as OPEN ACCESS references. They made it possible to efficiently illustrate several points of the present article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain C. Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pierre, A.C. (2018). Biomaterials Obtained by Gelation. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_143

Download citation

Publish with us

Policies and ethics