Skip to main content

Sol‐Gel Processing of Sulfide Materials

  • Reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology

Abstract

In this chapter, the sol‐gel processing of sulfide materials in bulk, powder, and thin film forms is reviewed, according to four different routes toward sol‐gel-derived sulfides: (a) sol‐gel deposition from a solution of sulfides, (b) sol‐gel synthesis from organometallic precursors, (c) colloidal sol‐gel synthesis from inorganic precursors, and (d) preparation via the vulcanization of oxide gels. In particular, As2S3 and GeSx optical films can be prepared in the form of planar waveguides by sol‐gel processing. However, the sol‐gel synthesis of multicomponent sulfide glasses, based, for example, on the Ge–S system, still needs further study and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida RM. Sol–gel silica films on silicon substrates. Int J Optoelectronics. 1994;9:135.

    Google Scholar 

  • Almeida RM. Sol–gel planar waveguides for integrated optics. J Non-Cryst Solids. 1999;259:176.

    CAS  Google Scholar 

  • Almeida RM, Xu J. Sulfide glass planar waveguides by sol–gel processing, in Sol-gel Optics V, Optoelectronics 2000, (25-28 Jan. 2000, San Jose, USA). Proc SPIE. 2000;3943:58.

    CAS  Google Scholar 

  • Almeida RM, Du XM, Barbier D, Orignac X. Er3+-doped multicomponent silicate glass planar waveguides prepared by sol–gel processing. J Sol-gel Sci & Technol. 1999;14:209.

    CAS  Google Scholar 

  • Alonso G, Petranovskii V, Del Valle M, Cruz-Reyes J, Licea-Claverie A, Fuentes S. Preparation of WS2 catalysts by in situ decomposition of tetraalkylammonium thiotungstates. Appl Catalysis A. 2000;197:87.

    CAS  Google Scholar 

  • Ballato J, Dejneka M, Riman RE, Snitzer E, Zhou W. Sol–gel synthesis of rare-earth-doped fluoride glass thin films. J Mater Res. 1996;11:841.

    CAS  Google Scholar 

  • Ballato J, Riman RE, Snitzer E. Sol–gel synthesis of fluoride optical materials for planar integrated photonic applications. J Non-Cryst Solids. 1997;213&214:126.

    CAS  Google Scholar 

  • Behrens H, Glasser LZ. Über das Verhalten von Arsen(III)-sulfid gegenüber flüssigem Ammoniak. Anorg Allgem Chem. 1955a;278:174.

    Google Scholar 

  • Behrens H, Glasser LZ. Vergleich der Reaktionsweisen von Arsen(III)-sulfid und Arsen(III)-selenid mit flüssigem Ammoniak. Anorg Allgem Chem. 1955b;282:12.

    Google Scholar 

  • Bensalem A, Schleich DM. Novel low-temperature synthesis of titanium sulfide. Mater Res Bull. 1988;23:857.

    CAS  Google Scholar 

  • Brinker CJ, Scherer GW. Sol–gel science: the physics and chemistry of sol–gel processing. San Diego: Academic Press; 1990.

    Google Scholar 

  • Celikkaya A, Akinc M. Preparation and mechanism of formation of spherical submicron zinc-sulfide powers. J Am Ceram Soc. 1990;73:2360.

    CAS  Google Scholar 

  • Chern GC, Lauks I. Spin-coated amorphous chalcogenide films. J Appl Phys. 1982;53:6979.

    CAS  Google Scholar 

  • Chern GC, Lauks I. Spin coated amorphous chalcogenide films: structural characterization. J Appl Phys. 1983;54:2701.

    CAS  Google Scholar 

  • Chianelli RR, Dines MB. Low-temperature solution preparation of group 4B, 5B and 6B transition-metal dichalcogenides. Inorg Chem. 1978;17:2758.

    Google Scholar 

  • Chiu G. The preparation of monodisperse copper sulfide sols. J Colloid Interface Se. 1977;62:193.

    Google Scholar 

  • Chiu G. The preparation of monodisperse zinc-sulfide sols. J Colloid Interface Sci. 1981;83:309.

    CAS  Google Scholar 

  • Chiu G, Meehan EJ. The preparation of monodisperse lead sulfide sols. Colloid Interface Sci. 1974;49:160.

    Google Scholar 

  • Czekaj CL, Rau MS, Goeffroy GL, Guiton TA, Pantano CG. An organometallic route to micron-sized whiskers of zinc-sulfide. Inorg Chem. 1988;27:3267.

    CAS  Google Scholar 

  • Dejneka M, Riman RE, Snitzer E. Sol–gel synthesis of high-quality heavy-metal fluoride glasses. J Am Ceram Soc. 1993;76:3147.

    CAS  Google Scholar 

  • Desai JD, Lokhande CD. Solution growth of microcrystalline Sb2S3 thin-films from thioacetamide bath. J Non-Cryst Solids. 1995;181:70.

    CAS  Google Scholar 

  • Donahue EJ, Roxburgh A, Yurchenko M. Sol–gel preparation of zinc sulfide using organic dithiols. Mater Res Bull. 1998;33:323.

    CAS  Google Scholar 

  • Frumarová B, Nemec P, Frumar M, Oswald J, Vlcek M. Synthesis and optical properties of Ge–Sb–S: PrCl3 system glasses. J Non-Cryst Solids. 1999;256&257:266.

    Google Scholar 

  • Galeener FL, Leadbetter AJ, Stringfellow MW. Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2. Phys Rev B. 1983;27:1052.

    CAS  Google Scholar 

  • Griffiths PR, de Haseth JA. Fourier transform infrared spectrometry. New York: Wiley; 1986. Chapter 10.

    Google Scholar 

  • Grozdanov I, Ristov M, Sinadinovski G, Mitreski M. Fabrication of amorphous Sb2S3 films by chemical-deposition. J Non-Cryst Solids. 1994;175:77.

    CAS  Google Scholar 

  • Guiton TA, Pantano CG. Sol-to-gel and gel-to-glass transitions in the As2S3-amine system. Brinker CJ, Clark DE, Ulrich DR. editors. Better Ceramics through Chemistry III. MRS Proc. 1988;121:509.

    Google Scholar 

  • Guiton TA, Czekaj CL, Pantano CG. Organometallic sol–gel chemistry of metal sulfides. J Non-Cryst Solids. 1990;121:7.

    CAS  Google Scholar 

  • Jones SD, Akridge JR, Shokoohi FK. Thin-film rechargeable Li batteries. Solid State Ion. 1994;69:357.

    CAS  Google Scholar 

  • Kavanagh Y, Cameron DC. Zinc sulfide thin films produced by sulfidation of sol–gel deposited zinc oxide. Thin Solid Films. 2001;398:24.

    Google Scholar 

  • Kawamoto Y, Tsuchihashi S. Thermal analysis of GeS glasses. J Am Ceram Soc. 1971a;54:526.

    CAS  Google Scholar 

  • Kawamoto Y, Tsuchihashi S. Properties and structure of glasses in the system GeS. J Am Ceram Soc. 1971b;54:131.

    CAS  Google Scholar 

  • Kumta PN, Risbud SH. Chemical synthesis of lanthanum sesquisulfide powders for infrared optical applications. In: Uhlmann DR, Ulrich DR, editors. Ultrastructure processing of advanced materials. New York:Wiley;1992. p.555.

    Google Scholar 

  • Li YP, Henry CH. Silica-based optical integrated circuits. IEE Proc Optoelectron. 1996;143:263.

    Google Scholar 

  • Livage J, Henry M, Sanchez C. Sol–gel chemistry of transition-metal oxides. Prog Solid State Chem. 1988;18:259.

    CAS  Google Scholar 

  • Lucas J, Zhang XH, Le Foulgoc K, Fonteneau G, Fogret E. Non-oxide glasses for optical waveguide applications. J Non-Cryst Solids. 1996;203:127.

    CAS  Google Scholar 

  • Lucovsky G, Galeener FL, Keezer RC, Geils RH, Six HA. Structural interpretation of the infrared and Raman spectra of glasses in the alloy system Ge1xSx. Phys Rev B 1974;10:5134.

    Google Scholar 

  • Mailer L, Boilot JP, Gacoin T. Sulfide gels and films: products of non-oxide gelation. J Sol-gel Sci Technol. 1998;13:61.

    Google Scholar 

  • Marchese D, Kakarantzas G, Jha A.1G4 lifetimes, optical and thermal characteristics of Pr-doped GeS2-chalcohalide glasses. J Non-Cryst Solids. 1996;196:314.

    CAS  Google Scholar 

  • Martins O, Xu J, Almeida RM. Sol–gel processing of germanium sulfide based films. J Non-Cryst Solids. 1999;256&257:25.

    CAS  Google Scholar 

  • Matijevic E, Wilhelmy DM. Preparation and properties of monodispersed spherical colloidal particles of cadmium-sulfide. J Colloid Interface Sci. 1982;86:476.

    CAS  Google Scholar 

  • Melling PJ. Alternative methods of preparing chalcogenide glasses. Am Ceram Soc Bull. 1984;63:1427.

    CAS  Google Scholar 

  • Mott NF, Davis EA. Electronic processes in non-crystalline materials. Oxford: Clarendon; 1979. Chapter 9.

    Google Scholar 

  • O’Brien P, McAleese J. Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. J Mater Chem. 1998;8:2309.

    Google Scholar 

  • Ohishi Y, Mori A, Kanamori T, Fujiura K, Sudo S. Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3-μm fiber amplifiers. Appl Phys Lett. 1994;65:13.

    CAS  Google Scholar 

  • Orignac X, Barbier D, Du XM, Almeida RM, McCarthy O, Yeatman E. Sol–gel silica/titania-on-silicon Er/Yb-doped waveguides for optical amplification at 1.5 μm. Opt Mater. 1999;12:1.

    CAS  Google Scholar 

  • Pütz J, Aegerter MA. Spin deposition of MoSx thin films. Thin Solid Films. 1999;351:119.

    Google Scholar 

  • Riman RE. Fluoride optical materials. In: Klein LC, editor. Sol–gel optics: processing and applications. Boston: Kluwer; 1994. Chapter 9.

    Google Scholar 

  • Saad M, Poulain M. Fluoride glass synthesis by sol–gel process. Am Ceram Soc Bull. 1995;74:66.

    CAS  Google Scholar 

  • Sanghera JS, Scotto C, Bayya S, Aggarwal ID. Catalyzed gelation of amorphous sulphides. J Non-Cryst Solids. 1999;256&257:31.

    CAS  Google Scholar 

  • Santiago JJ, Sano M, Hamman M, Chen N. Growth and optical characterization of spin-coated As2S3 multilayer thin films. Thin Solid Films. 1987;147:275.

    CAS  Google Scholar 

  • Schmidt H. Inorganic–organic composites for optoelectronics. In: Klein LC, editor. Sol–gel optics: processing and applications. Boston: Kluwer; 1994. Chapter 20.

    Google Scholar 

  • Seddon AB, Hodgson SNB, Scott MG. Sol–gel approach to preparing germanium disulfide. J Mater Sci. 1991;26:2599.

    CAS  Google Scholar 

  • Shtutina S, Klebanov M, Lyubin Y, Rosenwaks S, Volterra V. Photoinduced phenomena in spin-coated vitreous As2S3 and AsSe films. Thin Solid Films. 1995;261:263.

    CAS  Google Scholar 

  • Simons DR, Faber AJ, de Waal H. Pr3+-doped GeSx-based glasses for fiber amplifiers at 1.3 μm. Opt Lett. 1995a;20:468.

    CAS  Google Scholar 

  • Simons DR, Faber AJ, de Waal H. GeSx glass for Pr3+-doped fiber amplifiers at 1.3 μm. J Non­Cryst Solids. 1995b;185:283.

    CAS  Google Scholar 

  • Sriram MA, Kumta N. The thio-sol–gel synthesis of titanium disulfide and niobium disulfide: I. Materials chemistry. J Mater Chem. 1998a;8:2441.

    CAS  Google Scholar 

  • Sriram MA, Kumta N. The thio-sol–gel synthesis of titanium disulfide and niobium disulfide: 2. Morphology, defect structure and electrochemical characteristics of titanium disulfide. J Mater Chem. 1998b;8:2453.

    CAS  Google Scholar 

  • Stanic V, Pierre AC, Etsell TH, Mikula RJ. Preparation and characterization of GeS2. J Mater Res. 1996;101:363.

    Google Scholar 

  • Stanic V, Etsell TH, Pierre AC, Mikula RJ. Metal sulfide preparation from a sol–gel product and sulfur. J Mater Chem. 1997a;7:105.

    CAS  Google Scholar 

  • Stanic V, Etsell TH, Pierre AC, Mikula RJ. Sol–gel processing of ZnS. Mater Lett. 1997b;31:35.

    CAS  Google Scholar 

  • Stanic V, Pierre AC, Etsell TH, Mikula RJ. Preparation of tungsten sulfides by sol–gel processing. J Non-Cryst Solids. 1997c;220:58.

    CAS  Google Scholar 

  • Stanic V, Pierre AC, Etsell TH, Mikula RJ. Chemical kinetics study of the sol–gel processing of GeS2. J Phys Chem A. 2001;105:6136.

    CAS  Google Scholar 

  • Strom U, Martin TP. Photo-induced changes in the infrared vibrational spectrum of evaporated As2S3. Solid State Commun. 1979;29:527.

    Google Scholar 

  • Tomas SA, Vigil O, Alvarado-Gil JJ, Lozada-Morales R, Zelaya-Angel O, Vargas H, da Silva AF. Influence of thermal annealings in different atmospheres on the band-gap shift and resistivity of CdS thin-films. J Appl Phys. 1995;78:2204.

    CAS  Google Scholar 

  • Wilhelmy DM, Matijevic E. Preparation and properties of monodispersed spherical-colloidal particles of zinc-sulfide. J Chem Soc Faraday Trans. 1984;80:563.

    CAS  Google Scholar 

  • Xu J, Almeida RM. Preparation and characterization of germanium sulfide based sol–gel planar waveguides. J Sol–gel Sci Technol. 2000a;19:243.

    CAS  Google Scholar 

  • Xu J, Almeida RM. Sol–gel derived germanium sulfide planar waveguides. Mater Sci Semicond Proc. 2000b;3:339.

    CAS  Google Scholar 

  • Zhu XR, Niu RM, Sun ZR, Zeng HP, Wang ZG, Lang JP. Optical nonlinear properties of metal cluster [PPh4][C*pWS3(CuBr)3(dppm)]. Chem Phys Lett. 2003;372:524.

    Google Scholar 

Download references

Acknowledgments

One of the authors (JX) acknowledges the financial support of PRAXIS XXI program, in Portugal (GGP XXI/BPD/4659/96). JX also wishes to thank Prof. Carole C. Perry and Dr. Eoin O’Keefe, for their kind support, and he acknowledges the financial support of a research fellowship in Nottingham Trent University, sponsored by QinetiQ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui M. Almeida or Jian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Almeida, R.M., Xu, J. (2018). Sol‐Gel Processing of Sulfide Materials. In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-32101-1_11

Download citation

Publish with us

Policies and ethics