Skip to main content

Heat Transfer in Vivo: Phenomena & Models

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

Physical phenomena encountered in heat transfer in living tissues and mathematical models used to simulate them are discussed. Effects of high or low temperature on the biological systems at the different levels – cell, tissue, organism – as well a role of the blood circulation and of the structure of the vascular network on heat transfer are considered. The classic Pennes bioheat equation, a number of non-Fourier heat transfer models (including single-phase-lag and dual-phase-lag models), porous media models, models based on the fractional differential equations, and discrete vascular models are analyzed. A few selected exact solutions are presented.

When your feet are cold, cover your head – Inuit saying

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akbarzadeh AH, Pasini D (2014) Phase-lag heat conduction in multilayered cellular media with imperfect bonds. Int J Heat Mass Transf 75:656–667

    Article  Google Scholar 

  • Arkin H, Xu LX, Holmes KR (1994) Recent developments in modeling heat transfer in blood perfused tissues. IEEE Trans Biomed Eng 41:97–107

    Article  Google Scholar 

  • Ashwood-Smith MJ, Morris GJ, Fowler R, Appleton TC, Ashorn R (1988) Physical factors are involved in the destruction of embryos and oocytes during freezing and thawing procedures. Hum Reprod 3:795–802

    Article  Google Scholar 

  • Baish JW (1994) Formulation of a statistical model of heat transfer in perfused tissue. J Biomech Eng 116:521–527

    Article  Google Scholar 

  • Baish JW (2000) Microvascular heat transfer, ch. 98. In: Bonzano JD (ed) The biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Bald WB, Fraser J (1982) Cryogenic surgery. Rep Prog Phys 45:1381–1434

    Article  Google Scholar 

  • Baldwin RL (2005) Early days of studying the mechanism of protein folding. In: Buchner J, Kiefhaber T (eds) Protein folding handbook. Wiley-VCH, Weinheim, pp 3–21

    Google Scholar 

  • Bale JS (1996) Insect cold hardiness: a matter of life and death. Eur J Entomol 93:369–382

    Google Scholar 

  • Bali R, Sharma S (2011) A model for intra-articular heat exchange in a knee joint. Tribol Lett 41:379–386

    Article  Google Scholar 

  • Bank H, Mazur P (1973) Visualization of freezing damage. J Cell Biol 57:729–742

    Article  Google Scholar 

  • Baust JG, Gage AA (2005) The molecular basis of cryosurgery. BJU Int 95:1187–1191

    Article  Google Scholar 

  • Becker S, Kuznetsov A (eds) (2015) Heat transfer and fluid flow in biological processes. Academic, Amsterdam

    Google Scholar 

  • Behura AK, Prasad BN, Prasad L (2013) Burn depth prediction using analytical and numerical solution of Pennes bioheat equation. Int J Innov Appl Stud 3:215–220

    Google Scholar 

  • Bejan A (2001) The tree of convective heat streams: its thermal insulation function and the predicted 3/4-power relation between the body heat loss and body size. Int J Heat Mass Transf 44:699–704

    Article  MATH  Google Scholar 

  • Benson EE, Lynch PT, Jones J (1992) Detection of lipid peroxidation products in cryoprotected and frozen rice cells: consequences for post-thaw survival. Plant Sci 85:107–114

    Article  Google Scholar 

  • Bhowmik A, Singh R, Repaka R, Mishra SC (2013) Conventional and newly developed bioheat transport models in vascularized tissues: a review. J Therm Biol 38:107–125

    Article  Google Scholar 

  • Bilgili M, Simsek E, Sahin A, Ozbek A (2015) Examination of human heat loss in five Mediterranean regions. Physiol Behav 149:61–68

    Article  Google Scholar 

  • Bingi VN, Savin AV (2003) Effects of weak magnetic fields on biological systems: physical aspects. Phys Uspekhi 46:259–292

    Article  Google Scholar 

  • Bischof J, He X (2005) Thermal stability of proteins. Ann N Y Acad Sci 1066:1–22

    Article  Google Scholar 

  • Bligh J, Johnson KG (1973) Glossary of terms for thermal physiology. J Appl Physiol 35:941–961

    Google Scholar 

  • Breton G, Danyluk J, Ouellet F, Sarhan F (2000) Biotechnological applications of plant freezing associated proteins. Biotechnol Annu Rev 6:57–99

    Google Scholar 

  • Brey EM, King TW, Johnson C, McIntire LV, Reece GP, Patric CW (2002) A technique for quantitative three-dimensional analysis of microvascular structure. Microvasc Res 63:279–294

    Article  Google Scholar 

  • Brix G, Seebass M, Hellwig G, Griebel J (2002) Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imag 20:65–76

    Article  Google Scholar 

  • Canney MS, Khokhlova VA, Bessonova OV, Bailey MR, Crum LA (2010) Shock-induced heating and millisecond boiling in gels and tissues due to high intensity focused ultrasound. Ultrasound Med Biol 36:250–267

    Article  Google Scholar 

  • Cebremedhin KG, Wu B, Perano K (2016) Modeling conductive cooling for thermally stressed dairy cows. J Therm Biol 56:91–99

    Article  Google Scholar 

  • Charny CK (1992) Mathematical models of bioheat transfer. Adv Heat Transf 22:19–155

    Article  Google Scholar 

  • Charny CK, Weinbaum S, Lewin RL (1990) An evaluation of the Weinbaum-Jiji bioheat equation for normal and hyperthermic conditions. J Biomech Eng 112:80–87

    Article  Google Scholar 

  • Chato JC (1980) Heat transfer to blood vessels. J Biomech Eng 102:110–118

    Article  Google Scholar 

  • Chato JC (1992) A view of the history of heat transfer in bioengineering. Adv Heat Transf 22:1–18

    Article  Google Scholar 

  • Chen MM, Holmes KR (1980) Microvascular contribution to tissue heat transfer. Ann N Y Acad Sci 335:137–150

    Article  Google Scholar 

  • Cheng H, Plewes D (2002) Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. J Magn Reson Imag 16:598–609

    Article  Google Scholar 

  • Choi JH, Han B, Bishof JC (2004) Effects of a cryoprotective agent on thermal properties of solutions at subzero temperatures. ASME international mechanical engineering congress, Anaheim, 2004, pp 1–2

    Google Scholar 

  • Cholewska A, Stanek A, Kwiatek S, Cholewska A, Cieslar G, Straszak D, Gibinska J, Sieron-Stoltny K (2016) Proposal of thermal imaging application in photodynamic therapy – preliminary report. Photodiagn Photodyn Ther 14:34–39

    Article  Google Scholar 

  • Chua KJ (2013) Fundamental experiments and numerical investigation of cryofreezing incorporating vascular network with enhanced nano-freezing. Int J Therm Sci 70:17–31

    Article  Google Scholar 

  • Cicekli U (2003) Computational model for heat transfer in the human eye using the finite element method. MS thesis, Louisiana State University

    Google Scholar 

  • Cohen ML (1977) Measurements of the thermal properties of human skin. A review. J Investig Dermatol 69:333–338

    Article  Google Scholar 

  • Cooper TE, Trezek GJ (1971) Correlation of thermal properties of some human tissue with water content. Aerosp Med 42:24–27

    Google Scholar 

  • Craciunescu O, Clegg TS (1997) Perturbations of large vessels on induced temperature distributions. Part a: three-dimensional simulation study. Adv Heat Mass Transf Biotechnol, HTD 335:193–198

    Google Scholar 

  • Craciunescu O, Das SK, Dewhirst MK (1999) Three-dimensional microvascular networks fractal structure: a potential for tissue characterization? Adv Heat Mass Transf Biotechnol, HTD 363:9–13

    Google Scholar 

  • Crezee J, Lagendjik JJW (1992) Temperature uniformity during hyperthermia: impact of large vessels. Phys Med Biol 37:1321–1337

    Article  Google Scholar 

  • Cui ZF, Barbene JC (1991) The influence of model parameter values on the prediction of skin surface temperature: II. Contact problems. Phys Med Biol 36:1607–1620

    Article  Google Scholar 

  • Cvetkovic M, Polyak D, Hirata A (2016) The electromagnetic-thermal dosimetry for the homogeneous human brain model. Eng Anal Bound Elem 63:61–73

    Article  MathSciNet  Google Scholar 

  • Dagan Z, Weinbaum S, Jiji LM (1986) Parametric study of the three layer microcirculatory model for surface tissue energy exchange. J Biomech Eng 108:89–96

    Article  Google Scholar 

  • Damor RS, Kumar S, Shukla AK (2013) Numerical solution of fractional bioheat equation with constant and sinusoidal heat flux condition on skin tissue. Am J Math Anal 1:20–24

    Google Scholar 

  • Damor RS, Kumar S, Shukla AK (2014) Numerical simulation of fractional bioheat equation in hyperthermia treatment. J Mech Med Biol 14:1450,018

    Article  Google Scholar 

  • Damor RS, Kumar S, Shukla AK (2015) Parametric study of fractional bioheat equation in skin tissue with sinusoidal heat flux. Fract Differ Calculus 5:43–53

    Article  MathSciNet  Google Scholar 

  • Damor RS, Kumar S, Shukla AK (2016) Solution of fractional bioheat equation in terms of Fox’s H-function. SprinerPlus 5:111

    Article  Google Scholar 

  • Das K, Mishra SC (2014) Study of thermal behavior of a biological tissue: an equivalence of Pennes bioheat equation and Wulff continuum model. J Therm Biol 45:103–109

    Article  Google Scholar 

  • de Dear RJ, Arens E, Zhang H, Ouro M (1997) Convective and radiative heat transfer coefficients for individual human body segments. Int J Meteorol 40:141–156

    Google Scholar 

  • Debenetti PG (2003) Supercooled and glassy water. J Phys Condens Matter 15:R1669–R1726

    Article  Google Scholar 

  • Deng ZS, Liu J (2001) Blood perfusion-based model for characterizing the temperature fluctuations in living tissues. Physica A 300:521–530

    Article  MATH  Google Scholar 

  • Deng ZS, Liu J (2004a) Mathematical modeling of temperature mapping over skin surface and its application in thermal disease diagnostics. Comput Biol Med 34:8

    Article  Google Scholar 

  • Deng ZS, Liu J (2004b) Monte Carlo simulation of the effects of large blood vessels during hyperthermia. Lect Notes Comput Sci 3314:437–442

    Article  MATH  Google Scholar 

  • Deng ZS, Liu J (2006) Numerical study of the effects of large blood vessels on three-dimensional tissue temperature profiles during cryosurgery. Numer Heat Transfer, Part A 49:47–67

    Article  Google Scholar 

  • Devireddy RV, Leo PH, Lowengrub JS, Bischof JC (2002) Measurement and numerical analysis of freezing in solutions enclosed in a small container. Int J Heat Mass Transf 45:1915–1931

    Article  Google Scholar 

  • Dewhirst MW, Abraham J, Viglianti B (2015) Evolution of thermal dosimetry for application of hyperthermia to treat cancer. Adv Heat Tran 47:397–416

    Article  Google Scholar 

  • Diller KR (1992) Modeling of bioheat transfer processes at high and low temperatures. Adv Heat Tran 22:157–357

    Article  Google Scholar 

  • Dixit A, Gade U (2015) A case study on human bio-heat transfer and thermal comfort within CFD. Build Environ 94:122–130

    Article  Google Scholar 

  • Dumont F, Marechal PA, Gervais P (2006) Involvement of two specific causes of cell mortality in freeze-thaw cycles with freezing to −196 °C. Appl Environ Microbiol 72:21330–21335

    Article  Google Scholar 

  • Durkee JW, Antich PP (1991a) Characterization of bioheat transport using an exact solution to the cylindrical geometry, multi-region, time-dependent bioheat equation. Phys Med Biol 36:1377–1406

    Article  Google Scholar 

  • Durkee JW, Antich PP (1991b) Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions. Phys Med Biol 36:345–368

    Article  Google Scholar 

  • Durkee JW, Antich PP, Lee CE (1990) Exact solutions to the multiregion time-dependent bioheat equation. I: solution development. Phys Med Biol 35:847–867

    Article  Google Scholar 

  • Emery AF, Kramar PO, Guy AW, Lin JC (1975) Microwave induced temperature rises in rabbit eyes in cataract research. J Heat Transf 97:123–128

    Article  Google Scholar 

  • English MJM (2001) Physical principles of heat transfer. Curr Anesth Crit Care 12:66–71

    Article  Google Scholar 

  • Fan J, Wang L (2011a) Analytical theory of bioheat transport. J Appl Phys 109:104,202

    Google Scholar 

  • Fan J, Wang L (2011b) A general bioheat model at macroscale. Int J Heat Mass Transf 54:722–726

    Article  MATH  Google Scholar 

  • Ferras LL, Ford NJ, Morgado ML, Nobrea JM, Rebelo MS (2015) Fractional Pennes bioheat equation: theoretical and numerical studies. Fract Calculus Appl Anal 18:1080–1106

    MathSciNet  MATH  Google Scholar 

  • Ferreira MS, Yanagihara JI (2009) A transient three-dimensional heat transfer model of the human body. Int Comm Heat Mass Transf 36:718–724

    Article  Google Scholar 

  • Fhuong NL, Yamashita M, Yoo S, Ito K (2016) Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions. Build Environ 100:172–185

    Article  Google Scholar 

  • Foster KR (2000) Thermal and nonthermal mechanisms of interaction of radiofrequency energy with biological systems. IEEE Trans Plasma Sci 28:15–23

    Article  Google Scholar 

  • Franks F (2003) Nucleation of ice and its management in ecosystems. Philos Trans R Soc Lond A 361:557–574

    Article  Google Scholar 

  • Fujikawa S (1981) The effect of various cooling rates on the membrane ultrastructure of frozen human erythrocites and its relation to the extent of haemolysis after thawing. J Cell Sci 49:369–382

    Google Scholar 

  • Gabris E, Rybaczuk M, Kedzia A (2005) Fractal models of circulatory system. Symmetrical and asymmetrical approach comparison. Chaos Solit Fractals 24:707–715

    Article  MATH  Google Scholar 

  • Gabris E, Rybaczuk M, Kedzia A (2006) Blood flow simulation through fractal models of circulatory system. Chaos Solit Fractals 27:1–7

    Article  MATH  Google Scholar 

  • Gage AA, Baust JG (2002) Cryosurgery – a review of recent advances and current issues. Cryo Letters 23:69–78

    Google Scholar 

  • de Gennes PJG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  • Goodarzi-Ardakani V, Taebi-Rahni M, Salimi MR, Ahmadi G (2016) Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalin of hot air. Respir Physiol Neurobiol 223:49–58

    Article  Google Scholar 

  • Gupta PK, Singh J, Rai KN (2010) Numerical simulation for heat transfer in tissues during thermal therapy. J Therm Biol 35:295–301

    Article  Google Scholar 

  • Gurtin ME, Pipkin AC (1969) A general theory of heat conduction with finite wave speed. Arch Rat Mech Anal 31:113–126

    Article  MathSciNet  MATH  Google Scholar 

  • Han B, Bishof JC (2004) Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications. J Biomech Eng 126:196–203

    Article  Google Scholar 

  • Hansen E (2003) Modelling heat transfer in a bone-cement-prothesis system. J Biomech 36:787–795

    Article  Google Scholar 

  • Hassanpour S, Saboonchi A (2014) Interstitial hyperthermia treatment of countercurrent vascular tissue: a comparison of Pennes, WJ and porous media bioheat models. J Therm Biol 46:47–55

    Article  Google Scholar 

  • Hassanpour S, Saboonchi A (2015) The numerical assessment of volume averaging method in heat transfer modeling of tissue-like porous media. Int Comm Heat Mass Transf 63:41–48

    Article  Google Scholar 

  • Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE (1995) Fractals in biology and medicine. Chaos, Solitons Fractals 6:171–201

    Article  MathSciNet  MATH  Google Scholar 

  • Howells EB (2015) Measuring temperature. Anesth Intensive Care Med 16:358–362

    Article  Google Scholar 

  • Hubel A, Norman J, Darr TB (1999) Cryobiology characteristics of genetically modified hematpoietic progenitor cells. Cryobiology 38:140–153

    Article  Google Scholar 

  • Huttunen JMJ, Huttunen T, Malinen M, Kaipio JP (2006) Determination of heterogeneous thermal parameters using ultrasound induced heating and MR thermal mapping. Phys Med Biol 51:1011–1032

    Article  Google Scholar 

  • Izhar LI, Petrou M (2012) Thermal imaging in medicine. Adv Imag Electron Phys 171:41–114

    Article  Google Scholar 

  • Jenne JW, Preusser T, Gunther M (2012) High-intensity focused ultrasound: principles, therapy guidance, simulations and applications. Z Med Phys 22:311–322

    Article  Google Scholar 

  • Jiang SC, Ma N, Li HJ, Zhang XX (2002) Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns 28:713–717

    Article  Google Scholar 

  • Joseph DD, Presiosi L (1989) Heat waves. Rev Mod Phys 61:41–73

    Article  MathSciNet  Google Scholar 

  • Kandra D, Devireddy R (2008) Numerical simulation of local temperature distortions during ice nucleation of cells in suspension. Int J Heat Mass Transf 51:5655–5661

    Article  Google Scholar 

  • Karch R, Neumann F, Neumann M, Schreiner W (1999) A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Comput Biol Med 29:19–38

    Article  Google Scholar 

  • Karlsson JOM (2002) Cryopreservation: freezing and vitrification. Science 296:655–656

    Article  Google Scholar 

  • Kay JE, Tsemekhman V, Larson B, Baker M, Swanson B (2003) Comment on evidence for surface-initiated homogeneous nucleation. Atmos Chem Phys 3:1439–1443

    Article  Google Scholar 

  • Khaled ARA, Vafai K (2003) The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46:4989–5003

    Article  MATH  Google Scholar 

  • Khan AA, Vincent JFV (1996) Mechanical damage induced by controlled freezing in apple and potato. J Texture Stud 27:143–157

    Article  Google Scholar 

  • Kilbas AA, Srivastave HM, Trujillo JJ (2006) Theory and applications of fractional differential equations. North Holland, Amsterdam

    Google Scholar 

  • Kolios MC, Sherar MD, Hunt JW (1995) Large blood vessel cooling in heated tissue: a numerical study. Phys Med Biol 40:477–494

    Article  Google Scholar 

  • Kolios MC, Worthington AE, Sherar MD, Hunt JW (1998) Experimental evaluation of two simple thermal models using transient temperature analysis. Phys Med Biol 43:3325–3340

    Article  Google Scholar 

  • Kolios MC, Worthington AE, Holdsworth DW, Sherar MD, Hunt JW (1999) An investigation of the flow dependence of temperature gradients near large vessels during steady state and transient tissue heating. Phys Med Biol 44:1479–1497

    Article  Google Scholar 

  • Kondratiev TV, Wold R, Aasum E, Tveita T (2008) Myocardial mechanical dysfunction and calcium overload following rewarming from experimental hypothermia in vivo. Cryobiology 56:15–21

    Article  Google Scholar 

  • Konstas AA, Neimark MA, Laine AF, Pile-Spellman J (2007) A theoretical model of selective cooling using intracarotid cold saline infusion in the human brain. J Appl Physiol 102:1329–1340

    Article  Google Scholar 

  • Korpan NN (2001) Basics of cryosurgery. Springer, Wien

    Google Scholar 

  • Kotte A, van Leeuwen G, de Bree J, van der Koijk J, Crezee H, Lagendjik J (1996) A description of discrete vessel segments in thermal modelling of tissues. Phys Med Biol 41:865–884

    Article  Google Scholar 

  • Kou HS, Shih TC, Lin WL (2003) Effect of the directional blood flow on thermal dose distribution during thermal therapy: an application of a Green function based on the porous model. Phys Med Biol 48:1577–1589

    Article  Google Scholar 

  • Kucsko G, Maurer PG, Yao NY, Kubo M, Noh H, Lo P, Park H, Lukin MD (2013) Nanometer scale thermometry in a living cell. Nature 500:54–58

    Article  Google Scholar 

  • Kumar P, Kumar D, Rai KN (2015) A mathematical model for hyperbolic space-fractional bioheat transfer during thermal therapy. Procedia Eng 127:56–62

    Article  Google Scholar 

  • Kwak HS, Im HG, Shim EB (2016) A model for allometric scaling of mammalian metabolism with ambient heat loss. Integr Med Res 5:30–36

    Article  Google Scholar 

  • Lagendijk JJW (1982) A mathematical model to calculate temperature distributions in human and rabbit eyes during hyperthermic treatment. Phys Med Biol 27

    Google Scholar 

  • Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography: a review. Infrared Phys Technol 55:221–235

    Article  Google Scholar 

  • Lai D, Chen Q (2016) A two-dimensional model for calculating heat transfer in the human body in a transient and non-uniform thermal environment. Energ Buildings 118:114–122

    Article  Google Scholar 

  • Lakssass A, Kengne E, Semmaoui H (2010) Modified Pennes’ equation modelling bio-heat transfer in living tissues: analytical and numerical analysis. Nat Sci 2:1375–1385

    Google Scholar 

  • Leeuwen GMJV, Kotte ANT, de Bree J, der Koijk JFV, Crezee H, Lagendjik JJW (1997) Accuracy of geometrical modelling of heat transfer from tissue to blood vessels. Phys Med Biol 42:1451–1460

    Article  Google Scholar 

  • Li B, Wang J (2003) Anomalous heat conduction and anomalous diffusion in one-dimensional systems. Phys Rev Lett 91:044,301

    Article  Google Scholar 

  • Li L, Yu B, Liang M, Yang S, Zou M (2014) A comprehensive study of the effective thermal conductivity of living biological tissue with randomly distributed vascular trees. Int J Heat Mass Transf 72:616–621

    Article  Google Scholar 

  • Lifshits IM, Grossberg AY, Khokhlov AR (1979) Volume interactions in the statistical physics of a polymer macromolecule. Sov Phys Usp 22:123–142

    Article  Google Scholar 

  • Lillford PJ, Holt CB (2002) In vitro use of biological cryoprotectants. Phil Trans R Soc Lond B 357:945–951

    Article  Google Scholar 

  • Lin M, Xu F, Lu TJ, Bai BF (2010) A review of heat transfer 4 in human tooth – experimental characterization and mathematical modeling. Dent Mater 26:501–513

    Article  Google Scholar 

  • Liu J (2000) Preliminary survey on the mechanisms of the wave-like behaviors of heat transfer in living tissues. Forsch Ingenieur 66:1–10

    Article  Google Scholar 

  • Liu KC (2015) Analysis for high-order effects in thermal lagging to thermal responses in biological tissue. Int J Heat Mass Transf 81:347–354

    Article  Google Scholar 

  • Liu J, Xu LX (1999) Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating the skin surface. IEEE Trans Biomed Eng 46:1037–1043

    Article  Google Scholar 

  • Loitsanskii LG (1970) Mechanics of gases and liquids (in Russian), 3rd edn. Nauka, Moscow

    Google Scholar 

  • Ma W, Liu W, Li M (2015) Modeling heat transfer from warm water to foot; analytical solution and experimental validation. Int J Therm Sci 98:364–371

    Article  Google Scholar 

  • Marciak-Kozlowska J, Kozlowski M (2010) Heat analysis of biological tissue exposed to laser pulses. Lasers Eng 20:279–295

    MATH  Google Scholar 

  • Matzarakis A, Mayer H, Iziomon MG (1999) Application of a universal thermal index: physiological effective temperature. Int J Biometeorol 43:76–84

    Article  Google Scholar 

  • McKenzie JM, Voss IC, Siegel DI (2007) Groundwater flow with energy transport and water-ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv Wat Res 30:966–983

    Article  Google Scholar 

  • Moghadam MN, Abdel-Sayed P, Camine VM, Pioletti DP (2015) Impact of synovial fluid flow on temperature regulation in knee cartilage. J Biomech 48:370–374

    Article  Google Scholar 

  • Mohammed Y, Verhey JF (2005) A finite element method model to simulate laser interstitial thermotherapy in anatomical inhomogeneous regions. Biomed Eng Online 4:1–16

    Article  Google Scholar 

  • Mullen SF, Rosenbaum M, Critser JK (2007) The effect of osmotic stress on the cell volume, metaphase II spindle and developmental potential of in vitro matured porcine oocytes. Cryobiology 54:281–289

    Article  Google Scholar 

  • Nakayama A, Kuwahara F (2008) A general bioheat transfer model based on the theory of porous media. Int J Heat Mass Transf 51:3190–3199

    Article  MATH  Google Scholar 

  • Narasimhan A, Jha KK, Gopal L (2010) Transient simulations of heat transfer in human eye undergoing laser surgery. Int J Heat Mass Transf 53:482–490

    Article  MATH  Google Scholar 

  • Niemz MH (2007) Laser-tissue interactions, fundamentals and applications, 3rd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Oldham KB, Spanie J (1974) The fractional calculus. Academic, San Diego

    Google Scholar 

  • Orel D, Rozman J (2003) A computer simulation of ultrasound thermal bio-effect in embryonic models. Radioengineer 12:26–30

    Google Scholar 

  • Pandey H, Gurung DB (2015) Analytical and numerical approximation solution of bio-heat equation. LAP Lambert Academic Publishing, Saarbrücken

    Google Scholar 

  • Parsons KC (1993) Human thermal environments. Taylor & Francis, London

    Book  Google Scholar 

  • Pearce RS (1999) Molecular analysis of acclimation to cold. Plant Growth Regul 29:47–76

    Article  Google Scholar 

  • Pegg DE (1966) Cryobiology. Phys Med Biol 11:209–224

    Article  Google Scholar 

  • Pegg DE, Wusteman MC, Boylan S (1996) Fractures in cryopreserved elastic arteries: mechanism and prevention. Cryobiology 33:658–659

    Google Scholar 

  • Peng T, O’Neill DP, Payne SJ (2011) A two-equation coupled system for determination of liver tissue temperature during thermal ablation. Int J Heat Mass Transf 54:2100–2109

    Article  MATH  Google Scholar 

  • Pennes HH (1948) Analysis of tissue and arterial blood flow temperatures in the resting human forearm. J Appl Physiol 1:93–122; reprinted: Ibid, 1998, 85, 5–34

    Google Scholar 

  • Podlubny I (1998) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  • Polge C, Smith AU, Parkers AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666–676

    Article  Google Scholar 

  • Ponder E (1962) The coefficient of thermal conductivity of blood and of various tissues. The J Gener Physiol 45:545–551

    Article  Google Scholar 

  • Powell SL (2002) Contact cooling and it’s effects on manual dexterity. PhD thesis, Loughborough University

    Google Scholar 

  • Preusser T, Weihusen A, Peitgen HO (2005) On the modelling of perfusion in the simulation of RF-ablation. In: Proceedings of simulation and visualization (SimVis), Magdeburg, pp 259–268

    Google Scholar 

  • Raabe D (2007) A texture-component avrami model for predicting recrystallization textures, kinetics and grain size. Modelling Simul Mater Sci Eng 15:39–63

    Article  Google Scholar 

  • Roemer RB (1999) Engineering aspects of hyperthermia therapy. Ann Rev Biomed Eng 1:347–376

    Article  Google Scholar 

  • Rubinsky B (2000) Cryosurgery. Annu Rev Biomed Eng 2:157–187

    Article  Google Scholar 

  • Rubinsky B (2003) Principles of low temperature cell preservation. Heart Fail Rev 8:277–284

    Article  Google Scholar 

  • Salloum M, Ghaddar N, Ghali K (2007) A new bioheat model of human body and its integration to clothing models. Int J Therm Sci 46:371–384

    Article  Google Scholar 

  • Sanz PD, de Elvira C, Martino M, Zaritzky N, Otero L, Carrasco JA (1999) Freezing rate simulation as an aid to reducing crystallization damage in foods. Meat Sci 52:275–278

    Article  Google Scholar 

  • Schäfer AT, Kauffmann JD (1999) What happens in freezing bodies? Experimental study of histological tissue change caused by freezing injuries. Forensic Sci Int 102:149–158

    Article  Google Scholar 

  • Schmidt JD, Doyle J, Larison S (1998) Prostate cryoablation: update 1998. CA Cancer J Clin 48:239–253

    Article  Google Scholar 

  • Scott JA (1988) A finite element model of heat transport in the human eye. Phys Med Biol 33:227–241

    Article  Google Scholar 

  • Shi J, Chen Z, Shi M (2009) Simulation of heat transfer of biological tissue during cryosurery based on vascular trees. Appl Therm Eng 29:1792–1798

    Article  Google Scholar 

  • Shih TC, Kou HS, Liauch CT, Lin WL (2002a) Thermal models of bioheat transfer equations in living tissue and thermal dose equivalence due to hypertermia. Biomed Eng – Appl Basis Comm 14:40–56

    Article  Google Scholar 

  • Shih TC, Kou HS, Lin WL (2002b) Effect of effective tissue conductivity onthermal dose distributions of living tissues with directional blood flow during thermal therapy. Int Comm Heat Mass Transf 29:115–126

    Article  Google Scholar 

  • Shih TC, Yuan P, Lin WL, Kou HS (2007) Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Med Eng Phys 29:946–953

    Article  Google Scholar 

  • Shrivastava D, Roemer R (2005a) An analytical study of heat transfer in a finite region with two blood vessels and general dirichlet boundary conditions. Int J Heat Mass Transf 48:4090–4102

    Article  MATH  Google Scholar 

  • Shrivastava D, Roemer R (2005b) A general analytical derivation of a new, source term dependent 2-D Poisson conduction shape factors. Int J Heat Mass Transf 47:4293–4300

    Article  MATH  Google Scholar 

  • Shrivastava D, Roemer RB (2005c) An analytical study of “Poisson conduction shape factors” for two thermally significant vessels in a finite, heated tissue. Phys Med Biol 50:3627–3641

    Article  Google Scholar 

  • Sparks JP, Campbell GS, Black RA (2000) Liquid water content of wood tissue at temperatures below 0 °C. Can J For Res 30:624–630

    Article  Google Scholar 

  • Stańczyk M, Telega JJ (2002) Modelling of heat transfer in biomechanics – a review. Part I. Soft tissues. Acta Bioeng Biomech 4:31–61

    Google Scholar 

  • Stanley HE, Buldyrev SV, Goldberger AL, Goldberger ZD, Havlin S, Mantegna RN, Ossadnik SM, Peng CK, Simons M (1994) Statistical mechanics in biology: how ubiquitous are long-range correlations? Physica A 205:214–253

    Article  MATH  Google Scholar 

  • Steck LN, Sparrow EM, Abraham JP (2011) Non-invasive measurement of the human core temperature. Int J Heat Mass Transf 54:975–982

    Article  MATH  Google Scholar 

  • Stranges DF, Khayat RE, Albaalbaki B (2013) Thermal convection in non-Fourier fluids. Linear stability. Int J Therm Sci 74:14–23

    Article  Google Scholar 

  • Sturesson C (1998) Medical laser-induced thermotherapy. Models and applications. Lund Report on Atomic Physics LRAP-235

    Google Scholar 

  • Sumida S (2006) Transfusion and transplantation of cryopreserved cells and tissues. Cell Tissue Bank 7:265–365

    Article  Google Scholar 

  • Tarasov VE (2016) Heat transfer in fractal materials. Int J Heat Mass Transf 93:427–430

    Article  Google Scholar 

  • Torvi CL, Dale JD (1994) A finite element model of skin subjected to a flash fire. ASME J Biomed Eng 116:250–255

    Article  Google Scholar 

  • Tsou DY (1996) Macro- to microscale heat transfer: the lagging behavior. Taylor & Francis, New York

    Google Scholar 

  • Tungjikusolmun S, Tyler ST, Haemmerich D, Tsai JZ, Cao H, Webster JG, Lee FT, Mahvi DM, Vorperian VR (2002) Three-dimensional finite-element analysis for radio-frequency hepatic tissue ablation. IEEE Trans Med Eng 49:3–8

    Article  Google Scholar 

  • Turk JR, Laughin MH (2004) Physical activity and atherosclerosis: which animal model? Can J Appl Physiol 29:657–683

    Article  Google Scholar 

  • Tzou DY (1993) An engineering assessment to the relaxation time in thermal wave propagation. Int J Heat Mass Transf 36:1845–1851

    Article  MATH  Google Scholar 

  • Tzou DY, Dai W (2009) Thermal lagging in multi-carrier systems. Int J Heat Mass Transf 52:1206–1213

    Article  MATH  Google Scholar 

  • Vafai K (ed) (2010) Porous media: applications in biological systems and biotechnology. CRC Press, Boca Raton

    Google Scholar 

  • Vafai K (ed) (2015) Handbook of porous media, 3rd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Vajda T (1999) Cryo-bioorganic chemistry: molecular interactions at low temperature. Cell Mol Life Sci 56:398–414

    Article  Google Scholar 

  • Vanne A, Hynynen K (2003) MRI feedback temperature control for focused ultrasound surgery. Phys Med Biol 48:31–43

    Article  Google Scholar 

  • Vyas DCM, Kumar S, Srivastava A (2016) Porous media based bio-heat transfer analysis on counter-current artery vein tissue phantoms: applications in photo thermal therapy. Int J Heat Mass Transf 99:122–140

    Article  Google Scholar 

  • Wang Z, Zhao G, Wang T, Yu Q, Su M, He X (2015) Three-dimensional numerical simulation of the effects of fractal vascular tree on tissue temperature and intracellular ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng 90:296–304

    Article  Google Scholar 

  • Wang G, Zhang L, Wang X, Tai BL (2016) An inverse method to reconstruct the heat flu produced by bone grinding tools. Int J Therm Sci 101:85–92

    Article  Google Scholar 

  • Weinbaum S, Jiji LM (1985) A new simplified bioheat equation for the effect of blood flow on average tissue temperature. J Biomech Eng 107:131–139

    Article  Google Scholar 

  • Weinbaum S, Jiji L, Lemons DE (1984) Theory and experiment for the effect of vascular temperature on surface tissue heat transfer–part 2: model formulation and solution. J Biomech Eng 106:331–341

    Article  Google Scholar 

  • Werner J, Buse M (1988) Temperature profiles with respect to inhomogeneity and geometry of human body. J Appl Physiol 65:1110–1118

    Google Scholar 

  • Wessapan T, Rattanadecho P (2014) Influence of ambient temperature on heat transfer in the human eye during exposure to electromagnetic field at 900 MHz. Int J Heat Mass Transf 70:378–388

    Article  Google Scholar 

  • Wessapan T, Rattanadecho P (2016) Flow and heat transfer in biological tissue due to electromagnetic near-field exposure effects. Int J Heat Mass Transf 97:174–184

    Article  Google Scholar 

  • Wilson SB, Spence VA (1988) A tissue heat transfer model for relating dynamic skin temperature changes to physiological parameters. Phys Med Biol 33:895–912

    Article  Google Scholar 

  • Wissler EH (1998) Pennes’ 1948 paper revisited. J Appl Physiol 85:35–41

    Google Scholar 

  • Wu YL, Weinbaum S, Jiji L (1993) A new analytic technique for 3-D heat transfer from a countercurrent blood vessels. Int J Heat Mass Transf 36:1073–1083

    Article  MATH  Google Scholar 

  • Wu HL, Ma Y, Peng XF (2004) Freezing-thawing characteristics of botanical tissue and influence of water morphology. Chin Phys Lett 21:345–347

    Article  Google Scholar 

  • Wu C, Chen X, Zhou X (2016) Performance of novel solar assisted bian stone thermal therapy. Int J Heat Mass Transf 100:445–450

    Article  Google Scholar 

  • Xu F, Lu TJ (2009) Skin biothermomechanics: modeling and experimental characterization. Adv Appl Math 43:147–248

    Google Scholar 

  • Xu F, Lu TJ (2011) Introduction to skin biothermomechanics and thermal pain. Springer, Berlin

    Book  Google Scholar 

  • Xu F, Seffen KA, TJ L (2008) Non-Fourier analysis of skin biothermomechanics. Int J Heat Mass Transf 51:2237–2259

    Article  MATH  Google Scholar 

  • Yang D, Converse M, Mahvi DM, Webster JG (2007) Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng 54:1382–1388

    Article  Google Scholar 

  • Yu B, Jiang X, Wan C (2016a) Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium. Appl Math Comput 274:106–118

    MathSciNet  Google Scholar 

  • Yu Y, Xu D, Xu YS, Zhang Q (2016b) Variational formulation for a fractional heat transfer model in firefighter protective clothing. Appl Math Model 40:9675–9691

    Article  MathSciNet  Google Scholar 

  • Yue K, Yu C, Lei Q, Luo Y, Zhang X (2014) Numerical simulation of effect of vessel bifurcation on heat transfer in the magnetic fluid hyperthermia. Appl Therm Eng 69:11–18

    Article  Google Scholar 

  • Zamir M (2001) Fractal dimensions and multifractility in vascular branching. J Theor Biol 212:183–190

    Article  Google Scholar 

  • Zhang YT, Liu J, Zhou YX (2002) Pilot study on cryogenic heat transfer in biological tissues embedded with large blood vessels. Forsch Ingenier 67:188–197

    Article  Google Scholar 

  • Zhmakin AI (2009) Fundamentals of cryobiology: physical phenomena and mathematical models, Biological and medical physics, biomedical engineering. Springer, Berlin

    Book  MATH  Google Scholar 

  • Zhu L, Weinbaum S (1995) A model for heat transfer from embedded blood vessels in 2-D tissue preparations. J Biomech Eng 117:64–73

    Article  Google Scholar 

  • Zolfaghari A, Maerefat M (2011) Bioheat transfer. In: Dos Santos Bernardes MA (ed) Developments in heat transfer. InTech, Rijeka pp 153–170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Zhmakin .

Editor information

Editors and Affiliations

Section Editor information

Nomenclature

Nomenclature

C :

Concentration (m−3)

c :

Specific heat (Jkg−1m−3)

c b :

Blood specific heat (Jkg−1 m−3)

E a :

Activation energy (J)

G m , n :

Multi-regional Green function

Gz:

The Graetz number

K :

The permeability of the porous medium (m2)

L e :

Thermal equilibration length (m)

l i :

The direction cosines of the vessels

Nu:

The Nusselt number

Pe:

The Pecle number

Q :

Heat source (Wm−3)

q :

Heat flux (Wm−2)

q c :

Heat source due to blood convection (Wm−3)

q p :

Heat source due to blood perfusion (Wm−3)

\( {\dot{q}}_{\mathrm{met}} \) :

Metabolic heat rate (Wm−3)

Re:

The Reynolds number

T :

Temperature (K)

T a :

Temperature of the arterial blood (K)

T w :

Temperature of the vessel’s wall (K)

T :

Ambient temperature (K)

t :

Time (s)

V :

Volume (m3)

\( \overline{u} \) :

Mean blood velocity (ms−1)

1.1 Greek Symbols

α :

Order of fractional derivative

Γ :

Euler Gamma function

δ (s):

Dirac delta function

γ :

The angle between the direction of the blood vessels and the tissue temperature gradient

ε :

Porosity

κ :

Thermal diffusivity (m2 s−1)

λ :

Thermal conductivity (Wm−1K−1)

λ b :

Blood thermal conductivity (Wm−1K−1)

λ p :

“Perfusional” thermal conductivity (Wm−1K−1)

λ eff :

Effective thermal conductivity (Wm−1K−1)

μ :

Dynamic viscosity (kgm−1 s−1)

ρ :

Density (kgm−3),

σ ij :

Surface tension on the interface between phases i and j

τ :

Relaxation time (s)

τ q :

Phase lag for the heat flux vector (s)

τ T :

Phase lag temperature gradient (s)

Ω :

Irreversible thermal ‘damage”

ω b :

The blood perfusion rate (kgs−1m−3)

1.2 Mixed Symbols

Δt :

Time interval (s)

δV :

Elementary volume (m3)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Zhmakin, A.I. (2017). Heat Transfer in Vivo: Phenomena & Models. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics