Skip to main content

Heat Pipes and Thermosyphons

  • Living reference work entry
  • First Online:
Handbook of Thermal Science and Engineering
  • 419 Accesses

Abstract

Heat pipes are highly effective passive devices designed to transfer large quantities of heat through a small cross-sectional area over considerable distances, while operating nearly isothermally. Heat pipes are composed of a sealed container, lined internally with a wick and filled partially with a working fluid. Heat pipes are liquid-vapor phase change devices that can transfer heat from a hot source to a cold source through capillary forces generated by the flow of liquid in a wick or other porous media. To accomplish this, heat pipes take advantage of the latent heat of an internal working fluid to transfer heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

A :

Area (m2)

A b :

Bare condenser/evaporator surface area exposed (m2)

A c,f :

Inner surface area of the liquid film in the condenser (m2)

A t :

Total surface area of the condenser/evaporator section exposed (m2)

A w :

Cross-sectional area of the wick (m2)

c p :

Specific heat at constant pressure (J/kg∙K)

c v :

Specific heat at constant volume (J/kg∙K)

D :

Diameter (m)

D h :

Hydraulic diameter (m)

d :

Screen wick wire diameter (m)

F l :

Liquid fractional coefficient F l  = μ l /(ρ l A w K h fg )

F v :

Vapor fractional coefficient \( {F}_v=\left({fRe}_{z,v}\right){\mu}_v/2{R}_v^2{A}_v{\rho}_v{h}_{fg} \)

f :

Ergun coefficient

g :

Gravitational acceleration (m/s2)

h :

Heat transfer coefficient (W/ m2∙K)

h f :

Heat transfer coefficient of the liquid film (W/ m2∙K)

h c,f,r :

Heat transfer coefficient of internal liquid film in thermosyphon (W/ m2∙K)

h fg :

Latent heat of vaporization (kJ/kg)

HP:

Heat pipe

i :

Enthalpy (kJ)

K :

Wick permeability (m2)

k :

Thermal conductivity (W/m∙K)

L :

Length (m)

\( \dot{m} \) :

Mass flow rate (kg/s)

n :

Unit vector

N :

Mesh number

p :

Pressure (Pa)

p atm :

Atmospheric pressure (Pa)

Pr :

Prandtl number

Δp :

Pressure difference (Pa)

p e, δ :

Pressure drop due to interfacial evaporation (Pa)

p c, δ :

Pressure drop due to interfacial condensation (Pa)

p g :

Pressure change due to gravitational effects (Pa)

Q :

Heat transfer rate (W)

Q a :

Axial heat flow through the adiabatic section (W)

Q boiling :

Boiling heat transfer limit (W)

Q ent :

Entrainment heat transfer limit for conventional heat pipes (W)

Q flooding :

Flooding heat transfer limit for thermosyphons (W)

Q sonic :

Sonic heat transfer limit (W)

q” :

Heat flux (W/m2)

R :

Radius (m)/thermal resistance (°C/W, K/W)

R b :

Effective bubble radius (m)

R c, f, r :

Radial thermal resistance due to liquid film (°C/W, K/W)

R e, f, r :

Effective internal thermal resistance of the evaporator (°C/W, K/W)

R i :

Inner radius of the heat pipe (m)

R h, w :

Hydraulic radius of the wick surface pore (m)

Re :

Reynolds number

Re d :

Reynolds number based on bare heat pipe diameter

Re z, v :

Axial vapor Reynolds Number

R g :

Specific gas constant (J/kg∙K)

r :

Radius (m)

r eff :

Effective pore radius (m)

t :

Time (s)/thickness (m)

T :

Temperature (°C)

\( \overline{T} \) :

Average temperature (°C)

T 0 :

Temperature at the evaporator end cap (K)

ΔT :

Temperature difference (°C)

TS:

Thermosyphon

V :

Velocity (m/s)/Volume (m3)

V :

Velocity vector (m/s)

v :

Specific volume (m3/kg)

z :

Coordinate direction (m)

〈〉:

Averaged over the volume

〈〉 f :

Averaged over the volume of the fluid

α :

Accommodation coefficient

φ :

Porosity

θ :

Inclination angle of the heat pipe relative to the horizontal

μ :

Viscosity (Pa∙s)

ρ :

Density (kg/m3)

ρ 0 :

Density at the evaporator end cap (kg/m3)

σ :

Surface tension (N/m)

τ :

Stress tensor

ϕ :

Viscous heating (W/m3)

a :

Adiabatic

ax :

Axial

b :

Bare (nonfinned HP or TS)

c :

Condenser

cap:

Capillary

cold:

Cold

e :

Evaporator

eff:

Effective

ex :

External (outside HP/TS)

f :

Film, fin, fluid

fg :

Liquid-vapor

g :

Gravity

hot:

Hot

HP:

Heat pipe

i :

Inner/inlet

in :

Internal (inside HP/TS)

inter:

Interfacial

l :

Liquid

max:

Maximum

o :

Outer/outlet

p :

Liquid pool

r :

Radial

s :

Solid

tot:

Total

TS:

Thermosyphon

w :

Wick/wall

wk. :

Wick

References

  • Aghvami M, Faghri A (2011) Analysis of flat heat pipes with various heating and cooling configurations. Appl Therm Eng 31(14–15):2645–2655. https://doi.org/10.1016/j.applthermaleng.2011.04.034

    Article  Google Scholar 

  • Akbarzadeh A, Wadowski T (1996) Heat pipe-based cooling systems for photovoltaic cells under concentrated solar radiation. Appl Therm Eng 16(1):81–87. https://doi.org/10.1016/1359-4311(95)00012-3

    Article  Google Scholar 

  • Alizadehdakhel A, Rahimi M, Alsairafi A (2010) CFD modeling of flow and heat transfer in a thermodyphon. Int Commun Heat and Mass Tran 37:312–318

    Article  Google Scholar 

  • Alleau T, Bricard A, Chabanne J, Kermorgant H, de Lallee J (1984) Sodium heat pipes for thermal energy supply of a stirling engine. In: Proceedings of the 5th international heat pipe conference, Tsukuba, pp 54–58

    Google Scholar 

  • Alleau T, Bricard A, Thouvenin A (1987) Stirling engine coupled with a sodium boiler. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 748–752

    Google Scholar 

  • Allen MJ, Bergman TL, Faghri A, Sharifi N (2015) Robust heat transfer enhancement during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration. ASME J Heat Tran 137(10):102301

    Article  Google Scholar 

  • Alonso G, Perez R (1990) Cooling of power transformers with two-phase thermosyphons. In: Proceedings of the 7th international heat pipe conference, Minsk

    Google Scholar 

  • Amidieu M, Moscheti B, Tatry M (1987) Develpement of a space deployable radiator using heat pipes. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 380–385

    Google Scholar 

  • Anderson WG, Tarau C (2008) Variable conductance heat pipes for radioisotope stirling systems. Proc STAIF 969(2008):679–688. https://doi.org/10.1063/1.2845031

    Google Scholar 

  • Anderson WG, Dussinger PM, Sarraf DB, Tamanna S (2008) Heat pipe cooling of concentrating photovoltaic cells. In: 33rd IEEE photovoltaic specialists conference, San Diego. doi:https://doi.org/10.1109/PVSC.2008.4922577

  • Andraka CE, Rawlinson KS, Moss TA, Adkins DR, Moreno JB, Gallup DR, Cordeiro PG, Johansson S (1996) Solar heat pipe testing of the stirling thermal motors 4–120 stirling engine. In: SAND96-1424C, Proceedings of the 31st intersociety energy conversion engineering conference, vol 2, pp 1295–1300. https://doi.org/10.1109/IECEC.1996.553903

  • Andraka CE, Rawlinson KS, and Siegel NP (2012) Technical feasibility of storage on large dish stirling systems, Sandia report SAND2012-8352

    Google Scholar 

  • Barthelemy R, Jacobson D, Rabe D (1978) Heat pipe mirrors for high power lasers. In: Proceedings of the 3rd international heat pipe conference, Paper no. 78-391, Palo Alto

    Google Scholar 

  • Bartsch G, Butow E, Schroeder-Richter D (1987) Deicing of road surfaces employing heat pipes installed in the ground-water layer. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 715–720

    Google Scholar 

  • Basiulis A (1976) Follow-up on heat pipe applications, Proceedings of the 2nd International Heat Pipe Conference, Bologna, Italy, 473–480.

    Google Scholar 

  • Bassani C, Lighthart J, Sciamanna G, Marcarino P, Fernicola V (1990) Gas controlled heat pipes for primary temperature measurements. In: Proceedings of the 7th international heat pipe conference, Minsk

    Google Scholar 

  • Bayasan R, Korotchenko A, Volkov N, Pustovoit G, Lobanov A (2008) Use of two-phase heat pipes with the enlarged heat-exchange surface for thermal stabilization of permafrost soils at the bases of structures. Appl Therm Eng 28:274–277

    Article  Google Scholar 

  • Benn S, Poplaski L, Faghri A, Bergman T (2016) Analysis of thermosyphon/heat pipe integrateion for feasability of dry cooling for thermoelectric power genertion. Appl Therm Eng 104:358–374

    Article  Google Scholar 

  • Bergman T, Incropera F, DeWitt D, Lavine A (2011) Fundamentals of heat and mass transfer, 7th edn. John Wiley & sons

    Google Scholar 

  • Bilski WJ, Broadbent J (2010) Feel the heat: thermal design trends in medical devices. MD+DI 32(6)

    Google Scholar 

  • Brennan PJ, Thienel L, Swanson T, Morgan M (1993) Flight data for the cryogenic heat pipe (CRYOHP) experiment. AIAA-93-2735

    Google Scholar 

  • Brost O, Groll M, Mack H (1990) High-temperature lithium heat pipe furnace for space applications. In: Proceedings of the 7th international heat pipe conference, Minsk

    Google Scholar 

  • Brown R, Gustafson E, Gisondo F, Hutchison M (1990) Performance evaluation of the grumman prototype space erectable radiator system, AIAA Paper No. 90-1766

    Google Scholar 

  • Brown R, Kosson R, Ungar E (1991) Design of the SHARE II monogroove heat pipe. In: AIAA 91–1359, Proceedings of AIAA 26th thermophysics conference, Honolulu

    Google Scholar 

  • Cao Y (1996) Rotating micro/miniature heat pipes for turbine blade cooling applications. In: AFOSR contractor and grantee meeting on turbulence and internal flows, Atlanta

    Google Scholar 

  • Cao Y (1997) A feasibility study of turbine disk cooling by employing radially rotating heat pipes, Final report for summer faculty research program, Air Force Research Lab, Turbine Engine Division

    Google Scholar 

  • Cao Y (2010) Miniature high-temperature rotating heat pipes and their applications in gas turbine cooling. Front Heat Pip (FHP) 1:023002. https://doi.org/10.5098/fhp.v1.2.3002

    Google Scholar 

  • Cao Y, Faghri A (1990) Transient two-dimensional compressible analysis for high-temperature heat pipes with pulsed heat input. Numer Heat Tran; Part A: Appl 18(4):483–502. https://doi.org/10.1080/10407789008944804

    Article  Google Scholar 

  • Cao Y, Faghri A (1991) Transient multidimensional analysis of nonconventional heat pipes with uniform and nonuniform heat distributions. J Heat Transf 113(4):995–1002. https://doi.org/10.1115/1.2911233

    Article  Google Scholar 

  • Cao Y, Faghri A (1992) Closed-form analytical solutions of high-temperature heat pipe startup and frozen startup limitation. J Heat Transf 114(4):1028–1035. https://doi.org/10.1115/1.2911873

    Article  Google Scholar 

  • Cao Y, Faghri A (1993a) Conjugate modeling of high-temperature nosecap and wing leading-edge heat pipes. J Heat Transf 115(3):819–822. https://doi.org/10.1115/1.2910765

    Article  Google Scholar 

  • Cao Y, Faghri A (1993b) Simulation of the early startup period of high-temperature heat pipes from the frozen state by a rarefied vapor self-diffusion model. J Heat Transf 115(1):239–246. https://doi.org/10.1115/1.2910655

    Article  Google Scholar 

  • Cao Y, Faghri A (1993c) A numerical analysis of high-temperature heat pipe startup from the frozen state. J Heat Transf 115(1):247–254. https://doi.org/10.1115/1.2910657

    Article  Google Scholar 

  • Cao Y, Faghri A (1994) Micro/miniature heat pipes and operating limitations. J Enhanc Heat Tran 1(3):265–274

    Article  Google Scholar 

  • Chengsheng H, Tinghan L, Yaopu W, Zengqi H (1984) Design and performance of low temperature heat pipe blackbody. In: Proceedings of the 5th international heat pipe conference, Tsukuba, pp 74–81

    Google Scholar 

  • Chernysheva MA, Maydanik YF (2008) Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe. Int J Heat Mass Transf 51(17–18):4204–4215. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.021

    Article  MATH  Google Scholar 

  • Chuang PA (2003) An improved steady-state model of loop heat pipe based on experimental and theoretical analyses. PhD thesis, Pennsylvania State University, State College

    Google Scholar 

  • Cotter TP (1984) Principles and prospects for micro heat pipes. In: Proceedings of 5th international heat pipe conference, Tsukuba, pp 328–335

    Google Scholar 

  • Cullimore B, Bauman J (2000) Steady state and transient loop heat pipe modeling. In: SAE 2000–01-2316, Proceedings of the 34th international conference on environmental systems (ICES), Toulouse

    Google Scholar 

  • Do KH, Kim SJ, Garimella S (2008) A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int J Heat Mass Transf 51:4637–4650

    Article  MATH  Google Scholar 

  • Dobson RT (2004) Theoretical and experimental modelling of an open oscillatory heat pipes including gravity. Int J Therm Sci 43:113–119

    Article  Google Scholar 

  • Fadhl B,Wrobel LC, Jouhara H (2013) Numerical modelling of the temperature distribution in a two-phase closed thermosyphon. Applied Thermal Engineering, 60(1):122–131

    Google Scholar 

  • Faghri A (1990) Thermal energy storage heat exchangers. US Patent No. 4976308

    Google Scholar 

  • Faghri A (1991) Micro heat pipe energy storage systems. US Patent No. 5000252

    Google Scholar 

  • Faghri A (1993a) Centrifugal heat pipe vapor absorption heat pump. US Patent No. 5201196.

    Google Scholar 

  • Faghri A (1993b) Temperature regulation system for the human body using heat pipes. US Patent No. 5269369

    Google Scholar 

  • Faghri A (2012) Review and advances in heat pipe science and technology. J Heat Transf 134(12):123001. https://doi.org/10.1115/1.4007407

    Article  Google Scholar 

  • Faghri A (2014) Heat pipes: review, opportunities and challenges. Front Heat Pip 5(1). https://doi.org/10.1061/(ASCE)0887-3801(1995)9:3(209)

  • Faghri A (2016) Heat pipe science and technology, 2nd edn. Global Digital Press, Columbia, Missourie

    Google Scholar 

  • Faghri A, Thomas S (1989) Performance characteristics of a concentric annular heat pipe: part I-experimental prediction and analysis of the capillary limit. J Heat Transf 111(1–4):844–850. https://doi.org/10.1115/1.3250795

    Article  Google Scholar 

  • Faghri A, Buchko M (1991) Experimental and numerical analysis of low-temperature heat pipes with multiple heat sources. J Heat Transf 113(3):728–734. https://doi.org/10.1115/1.2910624

    Article  Google Scholar 

  • Faghri A, Guo Z (2005) Challenges and opportunities of thermal management issues related to fuel cell technology and modeling. Int J Heat Mass Transf 48(19–20):3891–3920. https://doi.org/10.1016/j.ijheatmasstransfer.2005.04.014

    Article  Google Scholar 

  • Faghri A, Zhang Y (2006) Transport phenomena in multiphase systems. Elsevier, Amsterdam

    Google Scholar 

  • Faghri A, Guo Z (2008) Integration of heat pipe into fuel cell technology. Heat Transfer Eng 29(3):232–238. https://doi.org/10.1080/01457630701755902

    Article  Google Scholar 

  • Faghri A, Guo Z (2009) Vapor feed fuel cells with a passive thermal-fluids management system. US Patent No. 7625649B1

    Google Scholar 

  • Faghri A, Chen MM, Morgan M (1989a) Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons. J Heat Transf 111(3):611–618. https://doi.org/10.1115/1.3250726

    Article  Google Scholar 

  • Faghri A, Reynolds D, Faghri P (1989b) Heat pipes for hands. Mech Eng 111(6):72–75

    Google Scholar 

  • Faghri A, Buchko M, Cao Y (1991a) A study of high-temperature heat pipes with multiple heat sources and sinks: part I – experimental methodology and frozen startup profiles. J Heat Transf 113(4):1003–1009. https://doi.org/10.1115/1.2911193

    Article  Google Scholar 

  • Faghri A, Buchko M, Cao Y (1991b) A study of high-temperature heat pipes with multiple heat sources and sinks: part II – analysis of continuum transient and steady- state experimental data with numerical predictions. Trans ASME J Heat Transf 113(4):1010–1016. https://doi.org/10.1115/1.2911194

    Article  Google Scholar 

  • Faghri A, Zhang Y, Howell J (2010) Advanced heat and mass transfer. Global Digital Press, Columbia

    Google Scholar 

  • Finlay I, Cree D, Blundell D (1976) Performance of a prototype isothermal oven for use with an ‘X’ band microwave noise standard. In: Proceedings of the 2nd international heat pipe conference, Bologna, pp 545–554

    Google Scholar 

  • Fletcher L, Peterson G (1997) Treatment method using a micro heat pipe catheter. US Patent No. 5591162

    Google Scholar 

  • Furukawa M (2006) Model-based method of theoretical design analysis of a loop heat pipe. J Thermophys Heat Transf 20(1):111–121. https://doi.org/10.2514/1.14675

    Article  Google Scholar 

  • Gi K, Maezawa S (2006) Study on solar cell cooling by heat pipe. In: Proceedings of the 8th international heat pipe symposium, Kumamoto, pp 295–299

    Google Scholar 

  • Giessler F, Sattler P, Thoren F (1987) Heat pipe cooling of electrical machines. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 557–564

    Google Scholar 

  • Guo Z, Faghri A (2006a) Development of planar air breathing direct methanol fuel cell stacks. J Power Sources 160(2):1183–1194. https://doi.org/10.1016/j.jpowsour.2006.03.045

    Article  Google Scholar 

  • Guo Z, Faghri A (2006b) Miniature DMFCs with passive thermal-fluids management system. J Power Sources 160(2):1142–1155. https://doi.org/10.1016/j.jpowsour.2006.03.013

    Article  Google Scholar 

  • Hamdan MO (2003) Loop heat pipe (LHP) modeling and development by utilizing coherent porous silicon (CPS) wicks. PhD thesis, University of Cincinnati

    Google Scholar 

  • Harley C, Faghri A (1994a) Complete transient two-dimensional analysis of two-phase closed thermosyphons including the falling condensate film. J Heat Transf 116(2):418–426. https://doi.org/10.1115/1.2911414

    Article  Google Scholar 

  • Harley C, Faghri A (1994b) Transient two-dimensional gas-loaded heat pipe analysis. J Heat Transf 116(3):716–723. https://doi.org/10.1115/1.2910927

    Article  Google Scholar 

  • Harley C, Faghri A (1995) Two-dimensional rotating heat pipe analysis. J Heat Transf 117(1):202–208. https://doi.org/10.1115/1.2822304

    Article  Google Scholar 

  • Hoang TT, Kaya T (1999) Mathematical modeling of loop heat pipe with two-phase pressure drop, AIAA paper no. 1999–3448

    Google Scholar 

  • Hoang T, Ku J (2003) Transient modeling of loop heat pipes, AIAA paper no. 2003–6082

    Google Scholar 

  • Hopkins R, Faghri A, Khrustalev D (1999) Flat miniature heat pipes with micro capillary grooves. J Heat Transf 121(1):102–109. https://doi.org/10.1115/1.2825922

    Article  Google Scholar 

  • Iwata Z, Sakuma S, Koga S (1984) Heat pipes for local cooling of underground power cables. In: Proceedings of the 5th international heat pipe conference, Tsukuba, pp 153–155

    Google Scholar 

  • Jalilvand A, Katsuta M, Saito K, Toyonaga J, Mochizuki M (2006) The study of the thermal performance of concentric annular heat pipe with the application in the heat roll of fusing unit of copy machine. Annals of the assembly for international heat transfer conference 13. https://doi.org/10.1615/IHTC13.p22.60

  • Jang JH, Faghri A, Chang WS, Mahefkey ET (1990) Mathematical modeling and analysis of heat pipe start-up from the frozen state. J Heat Transf 112(3):586–594. https://doi.org/10.1115/1.2910427

    Article  Google Scholar 

  • Jen TC, Gutierrez G, Eapen S, Barber G, Zhao H, Szuba PS, Labataille J, Manjunathaiah J (2002) Investigation of heat pipe cooling in drilling applications part 1: preliminary numerical analysis and verification. Int J Mach Tools Manuf 42(5):643–652

    Article  Google Scholar 

  • Kaya T, Goldak J (2006) Numerical analysis of heat and mass transfer in the capillary structure of a loop heat pipe. Int J Heat Mass Transf 49(17–18):3211–3220. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.028

    Article  MATH  Google Scholar 

  • Kaya T, Hoang TT (1999) Mathematical modeling of loop heat pipes and experimental validation. J Thermophys Heat Transf 13(3):314–320. https://doi.org/10.2514/2.6461

    Article  Google Scholar 

  • Kaya T, Ku J (1999) A parametric study of performance characteristics of loop heat pipes, SAE paper no. 2001-01-2317

    Google Scholar 

  • Kaya T, Ku J (2003) Thermal operational characteristics of a small-loop heat pipe. J Thermophys Heat Transf 17(4):464–470. https://doi.org/10.2514/2.6805

    Article  Google Scholar 

  • Kaya T, Pérez R, Gregori C, Torres A (2008) Numerical simulation of transient operation of loop heat pipes. Appl Therm Eng 28(8–9):967–974. https://doi.org/10.1016/j.applthermaleng.2007.06.037

    Article  Google Scholar 

  • Khandekar S, Panigrahi PK, Lefèvre F, Bonjour J (2010) Local hydrodynamics of flow in a pulsating heat pipe: a review. Front Heat Pip (FHP) 1:023003. https://doi.org/10.5098/fhp.v1.2.3002

    Google Scholar 

  • Khrustalev D (2010) Advances in transient modeling of loop heat pipe systems with multiple components. AIP Conf Proc 1208:55–67

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1994) Thermal analysis of a micro heat pipe. J Heat Transf 116(1):189–198. https://doi.org/10.1115/1.2910855

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1995a) Thermal characteristics of conventional and flat miniature axially-grooved heat pipes. J Heat Transf 117(4):1048–1054. https://doi.org/10.1115/1.2836280

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1995b) Heat transfer during evaporation on capillary-grooved structures of heat pipes. J Heat Transf 117(3):740–747. https://doi.org/10.1115/1.2822638

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1995c) Heat transfer in the inverted meniscus type evaporator at high heat fluxes. Int J Heat Mass Transf 38(16):3091–3101. https://doi.org/10.1016/0017-9310(95)00003-R

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1996) Estimation of the maximum heat flux in the inverted meniscus type evaporator of a flat miniature heat pipe. Int J Heat Mass Transf 39(9):1899–1909. https://doi.org/10.1016/0017-9310(95)00270-7

    Article  Google Scholar 

  • Kirkpatrick JP, Brennan PJ (1976) Long term performance of the advanced thermal control experiment. In: Proceedings of the 2nd international heat pipe conference, Bolgna, pp 629–646

    Google Scholar 

  • Langston L, Faghri A (1995) Heat pipe trubine vane cooling, Advanced turbine systems annual review, Morgantown

    Google Scholar 

  • Launay S, Sartre V, Bonjour J (2007a) Effects of fluid thermophysical properties on loop heat pipe operation. In: Proceedings of the 14th international heat pipe conference, Florianopolis

    Google Scholar 

  • Launay S, Platel V, Dutour S, Joly JL (2007b) Transient modeling of loop heat pipes for the oscillating behavior study. J Thermophys Heat Transf 21(3):487–495. https://doi.org/10.2514/1.26854

    Article  Google Scholar 

  • Launay S, Sartre V, Bonjour J (2007c) Parametric analysis of loop heat pipe operation: a literature review. Int J Therm Sci 46(7):621–636. https://doi.org/10.1016/j.ijthermalsci.2006.11.007

    Article  Google Scholar 

  • Launay S, Sartre V, Bonjour J (2008) Analytical model for characterization of loop heat pipes. J Thermophys Heat Transf 22(4):623–631. https://doi.org/10.2514/1.37439

    Article  Google Scholar 

  • Lefèvre F, Lips S, Bonjour J (2010) Investigation of evaporation and condensation processes specific to grooved flat heat pipes. Front Heat Pip (FHP) 1:023001. https://doi.org/10.5098/fhp.v1.2.3001

    Google Scholar 

  • Liang SB, Ma HB (2004) Oscillating motions of slug flow in capillary tubes. Int Commun Heat Mass Transfer 31(3):365–375. https://doi.org/10.1016/j.icheatmasstransfer.2004.02.007

    Article  Google Scholar 

  • Liao Z, Faghri A (2016) Thermal analysis of a heat pipe solar central receiver for concentrated solar power tower. Appl Therm Eng 102:952–960

    Article  Google Scholar 

  • Machiroutu S, Kluge B, Kuroda M, Pokharna H (2006) The study of the effect of the gap between blower and heat exchanger in Notebook PC thermal module design. In: Proceedings of the 8th international heat pipe symposium, Kumamoto, pp 46–50

    Google Scholar 

  • Maezawa S, Suzuki Y, Tsuchida A (1981) Heat transfer characteristics of disk-shaped rotating, wickless heat pipe. In: Proceedings of the 4th international heat pipe conference, London, pp 725–734

    Google Scholar 

  • Mashiko K, Okiai R, Mochizuki M, Ryokai K, Tsuchiya F, Fukuda M (1989) Development of an artificial permafrost storage using heat pipes. Paper no. 89-HT-15 ASME/AIChE national heat transfer conference, Philadelphia

    Google Scholar 

  • Matsuda S, Miskolczy G, Okihara M, Okihara T, Kanamori M, Hamada N (1981) Test of a horizontal heat pipe deicing panel for use on marine vessels. In: Proceedings of the 4th international heat pipe conference, London, pp 3–10

    Google Scholar 

  • Maydanik YF (2005) Loop heat pipes. Appl Therm Eng 25(5–6):635–657. https://doi.org/10.1016/j.applthermaleng.2004.07.010

    Article  Google Scholar 

  • Maydanik YF, Fershtater YG, Solodovnik N (1994) Loop heat pipes: design, investigation, prospects of use in aerospace technics, SAE paper 941185

    Google Scholar 

  • McIntosh R, Ollendorf S, Harwell W (1976) The international heat pipe experiment. In: Proceedings of the 2nd international heat pipe conference, Bologna, pp 589–592

    Google Scholar 

  • Meijer R, Khalili K (1990) Design and testing of a heat pipe gas combustion system for the STM4–120 stirling engine. In: Proceedings of the 7th international heat pipe conference, Minsk

    Google Scholar 

  • Mochizuki M, Saito Y, Kiyooka F, Nguyen T (2006) High power cooling chips by heat pipes and advanced heat spreader. In: 8th international heat pipe symposium, Kumamoto, pp 214–221

    Google Scholar 

  • Mochizuki M, Nguyen T, Saito Y, Kiyooka F, Wuttijumnong V (2007) Advanced micro-channel vapor chamber for cooling high power processors. In: Proceedings of the ASME interpack conference, IPACK 2007, Vancouver, pp 695–702

    Google Scholar 

  • Mochizuki M, Nguyen T, Mashiko K, Saito Y, Nguyen T, Wuttijumnong V (2011) A review of heat pipe applications including new opportunities. Front Heat Pip (FHP) 2:013001. https://doi.org/10.5098/fhp.v2.1.3001

    Google Scholar 

  • Mochizuki M, Nguyen T, Mashiko K, Saito Y, Singh R, Nguyen T, Wuttijumnong V (2013) Prevention possibility of nuclear power reactor meltdown by use of heat pipes for passive cooling of spent fuel. Front Heat Pip (FHP) 4:013001

    Google Scholar 

  • Momose T, Ishimaru H, Murase T, Tanaka S, Ishida S (1987) Application of heat pipe to electron-position collider TRISTAN. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 798–799

    Google Scholar 

  • Morgownik A, Savage C (1987) Design aspects of a deployable 10 kW heat pipe radiator. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 351–356

    Google Scholar 

  • Muraoka I, Ramos FM, Vlassov VV (2001) Analysis of the operational characteristics and limits of a loop heat pipe with porous element in the condenser. Int J Heat Mass Transf 44(12):2287–2297. https://doi.org/10.1016/S0017-9310(00)00259-3

    Article  MATH  Google Scholar 

  • Nguyen T, Johnson P, Akbarzadeh A, Gibson K, Mochizuki M (1992) Design, manufacture and testing of a closed cycle thermosyphon rankine engine. In: Proceedings of the 8th international heat pipe conference, Beijing

    Google Scholar 

  • Nithyanandam K, Pitchumani R (2012) Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power. Appl Energy, .(in press. https://doi.org/10.1016/j.apenergy.2012.09.056

  • Peck S, Fleischman G (1987) Lightweight heat pipe panels for space radiators. In: Proceedings of the 6th international heat pipe conference, Grenoble, pp 362–367

    Google Scholar 

  • Peterson GP (1992) Overview of micro heat pipe research and development. Appl Mech Rev 45(5):175–189. https://doi.org/10.1115/1.3119755

    Article  Google Scholar 

  • Ponnappan R (1990) Comparison of vacuum and gas loaded mode performances of a LMHP, AIAA-90-1755. In: Proceedings of AIAA/ASME 5th joint thermophysics and heat transfer conference, Seattle

    Google Scholar 

  • Poplaski L, Faghri A, Bergman T (2016) Analysis of internal and external thermal resistances of heat pipes including fins using three-dimensional numerical simulation. Int J Heat Mass Transf 102:455–469

    Article  Google Scholar 

  • Poplaski L, Benn S, Faghri A (2017) Thermal performance of heat pipes using nanofluids. Int J Heat Mass Transf 107:358–371

    Article  Google Scholar 

  • Ranjan R, Murthy JY, Garimella SV, Vadakkan U (2011) A numerical model for transport in flat heat pipes considering wick microstructure effects. Int J Heat Mass Transf 54(1–3):153–168. https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.057

    Article  MATH  Google Scholar 

  • Rankin JG (1984) Integration and flight demonstration of a high capacity monogroove heat pipe radiator, AIAA-84-1716. In: Proceedings of the AIAA 19th thermopyhsics conference, Snowmass

    Google Scholar 

  • Reay D (1977) Heat pipes – a new diecasting aid. In: Proceedings of the 1st national diecasters conference. Birmingham Exhibition Centre, Birmingham

    Google Scholar 

  • Rice J, Faghri A (2007) Analysis of porous wick heat pipes, including capillary dry-out limitations. AIAA J Thermophys Heat Transf 21(3):475–486. https://doi.org/10.2514/1.24809

    Article  Google Scholar 

  • Robak CW, Bergman TL, Faghri A (2011) Enhancement of latent heat ernergy storage using embedded heat pipes. Int J Heat Mass Transf 54(15–16):3476–3484. https://doi.org/10.1016/j.ijheatmasstransfer.2011.03.038

    Article  Google Scholar 

  • Schmidt T (1988) Heat transfer of finned tube bundles in crossflow. In: A. Zukauskas, G. Hewitt (Eds.), Hemisphere Publishing, Washington, D.C, p. 172.

    Google Scholar 

  • Schulze T, Sodtke C, Stephan P,Gambaryan-Roisman T (2007) Performance of heat pipe evaporation for space applications with combined re-entrant and micro grooves. Proceedings of the 14th International Heat Pipe Conference, Florianopolis, Brazil

    Google Scholar 

  • Shabgard H, Faghri A (2011) Performance characteristics of cylindrical heat pipes with multiple heat sources. Appl Therm Eng 31(16):3410–3419. https://doi.org/10.1016/j.applthermaleng.2011.06.026

    Article  Google Scholar 

  • Shabgard H, Bergman TL, Sharifi N, Faghri A (2010) High temperature latent heat thermal energy storage using heat pipes. Int J Heat Mass Transf 53(15–16):2979–2988. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.035

    Article  MATH  Google Scholar 

  • Shabgard H, Robak CW, Bergman TL, Faghri A (2012) Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications. Sol Energy 86(3):816–830. https://doi.org/10.1016/j.solener.2011.12.008

    Article  Google Scholar 

  • Shabgard H, Bergman TL, Faghri A (2013) Exergy analysis of latent heat thermal energy storage for solar power generation accounting for constraints imposed by long-term operation and the solar say. Energy 60:474–484

    Article  Google Scholar 

  • Shabgard H, Xiao B, Faghri A, Gupta R, Weissman W (2014) Thermal characteristic of a closed thermosyphon under various filling conditions. Int J Heat Mass Transf 70:91–102

    Article  Google Scholar 

  • Shabgard H, Allen M, Sharifi N, Benn S, Faghri A, Bergman T (2015) Heat pipe heat exchangers and heat sinks: opportunities, challenges, applications, analysis, and state of the art. Int J Heat Mass Transf 89(138–158). https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.020

  • Shafii MB, Faghri A, Zhang Y (2001) Thermal modeling of unlooped and looped pulsating heat pipes. J Heat Transf 123(6):1159–1172. https://doi.org/10.1115/1.1409266

    Article  MATH  Google Scholar 

  • Shafii MB, Faghri A, Zhang Y (2002) Analysis of heat transfer in unlooped and looped pulsating heat pipes. Int J Numer Methods Heat Fluid Flow 12(5):585–609. https://doi.org/10.1108/09615530210434304

    Article  MATH  Google Scholar 

  • Sharifi N, Wang S, Bergman TL, Faghri A (2012) Heat pipe-assisted melting of a phase change material. Int J Heat Mass Transf 55(13–14):3458–3469

    Article  Google Scholar 

  • Sharifi N, Bergman TL, Allen MJ, Faghri A (2014) Melting and solidification enhancement using a combined heat pipe, foil approach. Int J Heat Mass Transf 78:930–941

    Article  Google Scholar 

  • Sharifi N, Stark JR, Bergman TL, Faghri A (2016) The influence of thermal contact resistance on the relative performance of heat pipe-fin array systems. Appl Therm Eng 105:46–55

    Article  Google Scholar 

  • Shiraishi M, Mochizuki M, Mashiko K, Ito M, Sughiharu S, Yamagishi Y, Watanabe F (1992) Snow removal and deicing using flexible long heat pipes. In: Symposium on snow and snow related problems, International Glaciological Society

    Google Scholar 

  • Singh R, Mochizuki M, Nguyen T, Akbarzadeh A (2011) Applications of heat pipes in energy conservation and renewable energy based systems. Front Heat Pip (FHP) 2:033003. https://doi.org/10.5098/fhp.v2.3.3003

    Google Scholar 

  • Stark JR, Sharifi N, Bergman TL, Faghri A (2016) An experimentally verified numerical model of finned heat pipes in crossflow. Int J Heat Mass Transf 97:45–55

    Article  Google Scholar 

  • Swanson TD (2007) Thermal control technologies for the new age of space exploration. In: Proceedings of the 14th international heat pipe conference, Florianopolis

    Google Scholar 

  • Tang X, Park C (2008) Vibration/Shock-tolerant capillary two-phase loop technology for vehicle thermal control. In: Proceedings of the ASME summer heat transfer conference, Jacksonville, pp 531–537. https://doi.org/10.1115/HT2008-56349

  • Tarau C, Anderson WG (2010) Sodium variable conductance heat pipe for radioisotope stirling systems – design and experimental results. In: IECEC 2010, 8th annual international energy conversion engineering conference, Nashville

    Google Scholar 

  • Thieme LG, Schreiber JG (2003) NASA GRC Stirling technology development overview. AIP Conf Proc 654:613–620. https://doi.org/10.1063/1.1541346

    Article  Google Scholar 

  • Tournier JM, El-Genk MS (1994) A heat pipe transient analysis model. Int J Heat Mass Transf 37(5):753–762. https://doi.org/10.1016/0017-9310(94)90113-9

    Article  MATH  Google Scholar 

  • Vasiliev LL (2005) Heat pipes in modern heat exchangers. Appl Therm Eng 25(1):1–19. https://doi.org/10.1016/j.applthermaleng.2003.12.004

    Article  MathSciNet  Google Scholar 

  • Vasiliev LL, Kanonchik L, Mishkinis D, Rabetsky M (2000) Absorbed natural gas storage and transportation vessels. Int J Therm Sci 39(9–11):1047–1055

    Article  Google Scholar 

  • Waters ED (1976) Heat pipes for the Trans-Alaskan pipeline. In: Proceedings of the 2nd international heat pipe conference, Bolonga, pp 803–814

    Google Scholar 

  • Williams R (1978) Investigation of a cryogenic thermal diode, Paper no. 78–417. In: Proceedings of the 3rd international heat pipe conference, Palo Alto

    Google Scholar 

  • Winship J (1974) Diecasting sharpens its edge. Am Mach 118:77–78

    Google Scholar 

  • Wu XP, Mochizuki M, Mashiko K, Nguyen T, Nguyen T, Wuttijumnong V, Cabusao G, Singh R, Akbarzadeh A (2011) Cold energy storage systems using heat pipe technology for cooling data centers. Front Heat Pip (FHP) 2:013005. https://doi.org/10.5098/fhp.v2.1.3005

    Google Scholar 

  • Xiao B, Faghri A (2008) A three-dimensional thermal-fluid analysis of flat heat pipes. Int J Heat Mass Transf 51(11–12):3113–3126. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.023

    Article  MATH  Google Scholar 

  • Zhang Y, Faghri A (2002) Heat transfer in a pulsating heat pipe with open end. Int J Heat Mass Transf 45(4):755–764. https://doi.org/10.1016/S0017-9310(01)00203-4

    Article  MATH  Google Scholar 

  • Zhang Y, Faghri A (2003) Oscillatory flow in pulsating heat pipes with arbitrary numbers of turns. J Thermophys Heat Transf 17(3):340–347. https://doi.org/10.2514/2.6791

    Article  Google Scholar 

  • Zhang Y, Faghri A (2008) Advances and unsolved issues in pulsating heat pipes. Heat Transfer Eng 29(1):20–44. https://doi.org/10.1080/01457630701677114

    Article  Google Scholar 

  • Zhang Y, Faghri A, Shafii MB (2002) Analysis of liquid-vapor pulsating flow in a U-shaped miniature tube. Int J Heat Mass Transf 45(12):2501–2508. https://doi.org/10.1016/S0017-9310(01)00348-9

    Article  MATH  Google Scholar 

  • Zukauskas A, Ulinskas R (1988) Heat transfer in tube banks in crossflow. Hemisphere Publishing, Washington, DC

    Google Scholar 

  • Zuo ZJ, Faghri A (1997) Boundary element approach to transient heat pipe analysis. Numer Heat Transfer Part A: Appl 32(3):205–220. https://doi.org/10.1080/10407789708913888

    Article  Google Scholar 

  • Zuo ZJ, Faghri A (1998) A network thermodynamic analysis of the heat pipe. Int J Heat Mass Transf 41(11):1473–1484. https://doi.org/10.1016/S0017-9310(97)00220-2

    Article  MATH  Google Scholar 

  • Zuo ZJ, Faghri A, Langston L (1998) Numerical analysis of heat pipe turbine vane cooling. J Eng Gas Turbines Power 120(4):735–743. https://doi.org/10.1115/1.2818461

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Faghri .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Faghri, A. (2017). Heat Pipes and Thermosyphons. In: Kulacki, F. (eds) Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-32003-8_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32003-8_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32003-8

  • Online ISBN: 978-3-319-32003-8

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics