Skip to main content

Physiology of the Developing Hip and Pathogenesis of Femoroacetabular Impingement

  • Chapter
  • First Online:
Diagnosis and Management of Femoroacetabular Impingement

Abstract

Bone development occurs through either intramembranous ossification (mesenchymal or connective tissue) or enchondral ossification, where bone is formed from hyaline cartilage. The flat bones of the skull and the mandible, maxilla and clavicles are formed by intramembranous ossification. The long bones and spine and most of the other bones of the axial skeleton are formed by enchondral ossification. In this chapter, the growth and development of the hip, particularly the proximal femur, is reviewed as well as the pathways for the development of adaptive bony changes leading to FAI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agricola R, Bessems JH, Ginai AZ, Heijboer MP, van der Heijden RA, Verhaar JA, Weinans H, Waarsing JH. The development of Cam-type deformity in adolescent and young male soccer players. Am J Sports Med. 2012;40(5):1099–106.

    Article  PubMed  Google Scholar 

  2. Agricola R, Heijboer MP, Ginai AZ, Roels P, Zadpoor AA, Verhaar JA, Weinans H, Waarsing JH. A cam deformity is gradually acquired during skeletal maturation in adolescent and young male soccer players: a prospective study with minimum 2-year follow-up. Am J Sports Med. 2014;42(4):798–806.

    Article  PubMed  Google Scholar 

  3. Ayeni OR, Banga K, Bhandari M, Maizlin Z, de Sa D, Golev D, Harish S, Farrokhyar F. Femoroacetabular impingement in elite ice hockey players. Knee Surg Sports Traumatol Arthrosc. 2014;22(4):920–5.

    Article  PubMed  Google Scholar 

  4. Baranto A, Hellstrom M, Nyman R, Lundin O, Sward L. Back pain and degenerative abnormalities in the spine of young elite divers: a 5-year follow-up magnetic resonance imaging study. Knee Surg Sports Traumatol Arthrosc. 2006;14(9):907–14.

    Article  PubMed  Google Scholar 

  5. Bisgard JD. Longitudinal bone growth: the influence of sympathetic deinnervation. Ann Surg. 1933;97(3):374–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brighton CT. Structure and function of the growth plate. Clin Orthop Relat Res. 1978;136:22–32.

    PubMed  Google Scholar 

  7. Brighton CT. The growth plate. Orthop Clin North Am. 1984;15(4):571–95.

    CAS  PubMed  Google Scholar 

  8. Caine D, DiFiori J, Maffulli N. Physeal injuries in children’s and youth sports: reasons for concern? Br J Sports Med. 2006;40(9):749–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carsen S, Moroz PJ, Rakhra K, Ward LM, Dunlap H, Hay JA, Willis RB, Beaule PE. The Otto Aufranc Award. On the etiology of the cam deformity: a cross-sectional pediatric MRI study. Clin Orthop Relat Res. 2014;472(2):430–6.

    Article  PubMed  Google Scholar 

  10. Chung SM. The arterial supply of the developing proximal end of the human femur. J Bone Joint Surg Am. 1976;58(7):961–70.

    CAS  PubMed  Google Scholar 

  11. Chung SM, Batterman SC, Brighton CT. Shear strength of the human femoral capital epiphyseal plate. J Bone Joint Surg Am. 1976;58(1):94–103.

    CAS  PubMed  Google Scholar 

  12. Delgado-Baeza E, Sanz-Laguna A, Miralles-Flores C. Experimental trauma of the triradiate epiphysis of the acetabulum and hip dysplasia. Int Orthop. 1991;15(4):335–9.

    Article  CAS  PubMed  Google Scholar 

  13. Dias JJ, Lamont AC. Ultrasonic imaging of the lateral artery of the capital femoral epiphysis: brief report. J Bone Joint Surg Br. 1989;71(2):322.

    CAS  PubMed  Google Scholar 

  14. Dudda M, Kim Y-J, Zhang Y, Nevitt MC, Xu L, Niu J, Goggins J, Doherty M, Felson DT. Morphological differences between Chinese and Caucasian female hips: could they account for the ethnic difference in hip osteoarthritis? Arthritis Rheum. 2011;63(10):2992–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dvonch VM, Bunch WH. Pattern of closure of the proximal femoral and tibial epiphyses in man. J Pediatr Orthop. 1983;3(4):498–501.

    Article  CAS  PubMed  Google Scholar 

  16. Epstein NE, Epstein JA. Limbus lumbar vertebral fractures in 27 adolescents and adults. Spine (Phila Pa 1976). 1991;16(8):962–6.

    Article  CAS  Google Scholar 

  17. Flecker H. Time of appearance and fusion of ossification centers as observed by roentgenographic methods. Am J Roentgenol. 1942;47:97–159.

    Google Scholar 

  18. Fujii T, Takai S, Arai Y, Kim W, Amiel D, Hirasawa Y. Microstructural properties of the distal growth plate of the rabbit radius and ulna: biomechanical, biochemical, and morphological studies. J Orthop Res. 2000;18(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  19. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital femoral epiphysis. Relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79(10):1489–97.

    CAS  PubMed  Google Scholar 

  20. Hack K, Di Primio G, Rakhra K, Beaule PE. Prevalence of cam-type femoroacetabular impingement morphology in asymptomatic volunteers. J Bone Joint Surg Am. 2010;92(14):2436–44.

    Article  PubMed  Google Scholar 

  21. Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop Relat Res. 1986;213:20–33.

    PubMed  Google Scholar 

  22. Hefti F, von Laer L, Morscher E. Principles and pathogenesis of post-traumatic axial malalignment in the growth years. Orthopade. 1991;20(6):324–30.

    CAS  PubMed  Google Scholar 

  23. Heuter C. Anatomische stidien an den extremitatengelenken neugeborener und erwachsener. Virchows Archiv Int J Pathol. 1862;25:572–99.

    Article  Google Scholar 

  24. Hogervorst T, Bouma H, de Boer SF, de Vos J. Human hip impingement morphology: an evolutionary explanation. J Bone Joint Surg. 2011;93(6):769–76.

    Article  CAS  Google Scholar 

  25. Jaramillo D, Laor T, Zaleske DJ. Indirect trauma to the growth plate: results of MR imaging after epiphyseal and metaphyseal injury in rabbits. Radiology. 1993;187(1):171–8.

    Article  CAS  PubMed  Google Scholar 

  26. Jonasson P, Ekstrom L, Hansson H-A, Sansone M, Karlsson J, Sward L, Baranto A. Cyclical loading causes injury in and around the porcine proximal femoral physeal plate: proposed cause of the development of cam deformity in young athletes. J Exp Orthop. 2015;2:6.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kember NF. Cell division in endochondral ossification. A study of cell proliferation in rat bones by the method of tritiated thymidine autoradiography. J Bone Joint Surg Br. 1960;42B:824–39.

    CAS  PubMed  Google Scholar 

  28. Kumar R, Aggarwal A. Femoroacetabular impingement and risk factors: a study of 50 cases. Orthop Surg. 2011;3(4):236–41.

    Article  PubMed  Google Scholar 

  29. Lindstrom JR, Ponseti IV, Wenger DR. Acetabular development after reduction in congenital dislocation of the hip. J Bone Joint Surg Am. 1979;61(1):112–8.

    CAS  PubMed  Google Scholar 

  30. Liu RW, Armstrong DG, Levine AD, Gilmore A, Thompson GH, Cooperman DR. An anatomic study of the epiphyseal tubercle and its importance in the pathogenesis of slipped capital femoral epiphysis. J Bone Joint Surg Am. 2013;95(6):e341–8.

    Article  PubMed  Google Scholar 

  31. Lundin O, Hellstrom M, Nilsson I, Sward L. Back pain and radiological changes in the thoraco-lumbar spine of athletes. A long-term follow-up. Scand J Med Sci Sports. 2001;11(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  32. Maffulli N, Longo UG, Gougoulias N, Loppini M, Denaro V. Long-term health outcomes of youth sports injuries. Br J Sports Med. 2010;44(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  33. Malina RM. Exercise as an influence upon growth. Review and critique of current concepts. Clin Pediatr. 1969;8(1):16–26.

    Article  CAS  Google Scholar 

  34. Morgan JD, Somerville EW. Normal and abnormal growth at the upper end of the femur. J Bone Joint Surg Br. 1960;42-B:264–72.

    CAS  PubMed  Google Scholar 

  35. Murray RO. The aetiology of primary osteoarthritis of the hip. Br J Radiol. 1965;38(455):810–24.

    Article  CAS  PubMed  Google Scholar 

  36. Murray RO, Duncan C. Athletic activity in adolescence as an etiological factor in degenerative hip disease. J Bone Joint Surg Br. 1971;53(3):406–19.

    CAS  PubMed  Google Scholar 

  37. Nicholson JT, Nixon JE. Epiphyseal fractures. J Pediatr. 1961;59:939–50.

    Article  CAS  PubMed  Google Scholar 

  38. Ogden JA. Changing patterns of proximal femoral vascularity. J Bone Joint Surg Am. 1974;56(5):941–50.

    CAS  PubMed  Google Scholar 

  39. Packer JD, Safran MR. The etiology of primary femoroacetabular impingement: genetics or acquired deformity? J Hip Preserv Surg. 2015. doi:10.1093/jhps/hnv046.

    PubMed  PubMed Central  Google Scholar 

  40. Plaster RL, Schoenecker PL, Capelli AM. Premature closure of the triradiate cartilage: a potential complication of pericapsular acetabuloplasty. J Pediatr Orthop. 1991;11(5):676–8.

    Article  CAS  PubMed  Google Scholar 

  41. Pollard TC, Villar RN, Norton MR, Fern ED, Williams MR, Simpson DJ, Murray DW, Carr AJ. Femoroacetabular impingement and classification of the cam deformity: the reference interval in normal hips. Acta Orthop. 2010;81(1):134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ponseti IV. Growth and development of the acetabulum in the normal child. Anatomical, histological, and roentgenographic studies. J Bone Joint Surg Am. 1978;60(5):575–85.

    CAS  PubMed  Google Scholar 

  43. Portinaro NM, Murray DW, Benson MK. Microanatomy of the acetabular cavity and its relation to growth. J Bone Joint Surg Br. 2001;83(3):377–83.

    Article  CAS  PubMed  Google Scholar 

  44. Robertson Jr WW. Newest knowledge of the growth plate. Clin Orthop Relat Res. 1990;253:270–8.

    PubMed  Google Scholar 

  45. Shapiro F, Holtrop ME, Glimcher MJ. Organization and cellular biology of the perichondrial ossification groove of ranvier: a morphological study in rabbits. J Bone Joint Surg Am. 1977;59(6):703–23.

    CAS  PubMed  Google Scholar 

  46. Siebenrock KA, Behning A, Mamisch TC, Schwab JM. Growth plate alteration precedes cam-type deformity in elite basketball players. Clin Orthop Relat Res. 2013;471(4):1084–91.

    Article  PubMed  Google Scholar 

  47. Siebenrock KA, Wahab KHA, Werlen S, Kalhor M, Leunig M, Ganz R. Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res. 2004;418:54–60.

    Article  PubMed  Google Scholar 

  48. Siffert RS. The growth plate and its affections. J Bone Joint Surg Am. 1966;48(3):546–63.

    CAS  PubMed  Google Scholar 

  49. Stulberg SD, Cordell LD, Harris WH, Ramsey PL, MacEwen GD. Unrecognized childhood hip disease: a major cause of idiopathic osteoarthritis of the hip. In: The hip: proceedings of the third open scientific meeting of the hip society. St Louis: Mosby; 1975. p. 212–28.

    Google Scholar 

  50. Sward L, Hellstrom M, Jacobsson B, Peterson L. Back pain and radiologic changes in the thoraco-lumbar spine of athletes. Spine (Phila Pa 1976). 1990;15(2):124–9.

    Article  CAS  Google Scholar 

  51. Tak I, Weir A, Langhout R, Waarsing JH, Stubbe J, Kerkhoffs G, Agricola R. The relationship between the frequency of football practice during skeletal growth and the presence of a cam deformity in adult elite football players. Br J Sports Med. 2015:49:630–4.

    Google Scholar 

  52. Tannenbaum E, Kopydlowski N, Smith M, Bedi A, Sekiya JK. Gender and racial differences in focal and global acetabular version. J Arthroplasty. 2014;29(2):373–6.

    Article  PubMed  Google Scholar 

  53. Tayton K. Does the upper femoral epiphysis slip or rotate? J Bone Joint Surg Br. 2007;89(10):1402–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tayton K. The epiphyseal tubercle in adolescent hips. Acta Orthop. 2009;80(4):416–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Trueta J. The normal vascular anatomy of the human femoral head during growth. J Bone Joint Surg Br. 1957;39-B(2):358–94.

    CAS  PubMed  Google Scholar 

  56. Trueta J, Amato VP. The vascular contribution to osteogenesis. III. Changes in the growth cartilage caused by experimentally induced ischaemia. J Bone Joint Surg Br. 1960;42-B:571–87.

    CAS  PubMed  Google Scholar 

  57. Trueta J, Little K. The vascular contribution to osteogenesis. II. Studies with the electron microscope. J Bone Joint Surg Br. 1960;42-B:367–76.

    CAS  PubMed  Google Scholar 

  58. Trueta J, Morgan JD. The vascular contribution to osteogenesis. I. Studies by the injection method. J Bone Joint Surg Br. 1960;42-B:97–109.

    CAS  PubMed  Google Scholar 

  59. Trueta J, Trias A. The vascular contribution to osteogenesis. IV. The effect of pressure upon the epiphysial cartilage of the rabbit. J Bone Joint Surg Br. 1961;43-B:800–13.

    CAS  PubMed  Google Scholar 

  60. Tucker FR. Arterial supply to the femoral head and its clinical importance. J Bone Joint Surg Br. 1949;31B(1):82–93.

    CAS  PubMed  Google Scholar 

  61. Wertheimer LG, Lopes Sde L. Arterial supply of the femoral head. A combined angiographic and histological study. J Bone Joint Surg Am. 1971;53(3):545–56.

    CAS  PubMed  Google Scholar 

  62. Wolff J. The law of bone remodeling. Berlin/Heidelberg: Springer; 1986.

    Book  Google Scholar 

  63. Yanke AB, Khair MM, Stanley R, Walton D, Lee S, Bush-Joseph CA, Espinosa Orias AA, Inoue N, Nho SJ. Sex differences in patients with CAM deformities with femoroacetabular impingement: 3-dimensional computed tomographic quantification. Arthroscopy. 2015;31(12):2301–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Páll Sigurgeir Jónasson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jónasson, P.S., Ayeni, O.R., Karlsson, J., Sansone, M., Baranto, A. (2017). Physiology of the Developing Hip and Pathogenesis of Femoroacetabular Impingement. In: Ayeni, O., Karlsson, J., Philippon, M., Safran, M. (eds) Diagnosis and Management of Femoroacetabular Impingement. Springer, Cham. https://doi.org/10.1007/978-3-319-32000-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32000-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31998-8

  • Online ISBN: 978-3-319-32000-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics