Skip to main content

The Long-Term Care of Patients with Critical Limb Ischemia (CLI)

  • Chapter
  • First Online:
Critical Limb Ischemia
  • 2436 Accesses

Abstract

Critical limb ischemia (CLI) is the end stage of peripheral artery disease (PAD). It encompasses <5 % of all cases of PAD, but its prognosis is poor. The 1-year mortality and major amputation rates range from 20 to 50 %. The treatment of the patient with CLI is complex. Its foundation is based on the development of three pillars, each of which represents diverse aspects and goals of therapy: medical, interventional, and surveillance. Medical management has a role in the treatment of risk factors for secondary prevention of cardiovascular disease, with a less established role in the treatment of symptoms and complications of severe limb hypoperfusion. Pharmacological agents may also have a role as adjuncts or alternatives in patients who are unsuitable for revascularization or those who have suboptimal results. Interventional therapies (surgical and endovascular) are the mainstay form of treatment in CLI and are directed to achieve revascularization, symptom control, wound healing, and limb salvage. Last but not least, the surveillance pillar of treatment is the one that is currently least well represented and represents the Achilles heel of contemporary CLI care, as most patients do not have a rigorous follow-up. It is intended to provide close follow-up and monitoring after revascularization and healing. At the first sign of decline or evidence of stalled progress, the patient should once again be promptly referred to the CLI team and the continuum of care reinitiated. Future directions include the development of biological therapies based on the use of growth factors, gene therapy, and stem cells, which are currently being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernandez N, McEnaney R, Marone LK, et al. Predictors of failure and success of tibial interventions for critical limb ischemia. J Vasc Surg. 2010;52(4):834–42.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Karnabatidis D, et al. Incidence, anatomical location, and clinical significance of compressions and fractures in infrapopliteal balloon-expandable metal stents. J Endovasc Ther. 2009;16:15–22.

    Article  PubMed  Google Scholar 

  3. European Working Group on Critical Limb Ischemia. Second European Consensus Document on chronic critical leg ischaemia. Eur J Vasc Surg. 1992;6(Suppl A):1–32.

    Google Scholar 

  4. Bosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimus-eluting versus bare metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. The DESTINY study. J Vasc Surg. 2012;55:390–9.

    Article  PubMed  Google Scholar 

  5. Balzer J, Zeller T, Rastan A, et al. Percutaneous interventions below the knee in patients with critical limb ischemia using drug eluting stents. J Cardiovasc Surg. 2010;51:183–91.

    CAS  Google Scholar 

  6. Siablis D, Karnabatidis D, Katsanos K, et al. Infrapopliteal application of paclitaxel-eluting stents for critical limb ischemia: midterm angiographic and clinical results. J Vasc Interv Radiol. 2007;18:1351–61.

    Article  PubMed  Google Scholar 

  7. Varu V, Hogg M, Kibbe M. Critical limb ischemia. J Vasc Surg. 2010;51:230–41.

    Article  PubMed  Google Scholar 

  8. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, On behalf of the TASC II Working Group, et al. Inter-Society Consensus for the management of peripheral arterial disease (TASC II). Eur J Vasc Endovasc Surg. 2007;33 Suppl 1:S1–75.

    Article  PubMed  Google Scholar 

  9. Pipinos I, Judge A, Selsby J, Zhu Z, Swanson S, Nella A, et al. The myopathy of peripheral arterial occlusive disease: part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc Endovascular Surg. 2008;41(6):481–9.

    Article  Google Scholar 

  10. Pipinos I, Judge A, Selsby J, Zhu Z, Swanson S, Nella A, et al. The myopathy of peripheral arterial occlusive disease: part 2.Oxidative stress, neuropathy, and shift in muscle fiber type. Vasc Endovascular Surg. 2008;42(2):101–12.

    Article  PubMed  Google Scholar 

  11. Rogers RK, Hiatt WR. Pathophysiology and treatment of critical limb ischemia. 2013. http://www.vascularmed.org/clinical_archive/Pathophysiology-Treatment-of-CLI_11Feb2013.pdf.

  12. Becker F, Robert-Ebadi H, Ricco JB, Setacci C, Cao P, de Donato G, et al. Chapter 1: definitions, epidemiology, clinical presentation and prognosis. Eur J Vasc Endovasc Surg. 2011;42(S2):S4–12.

    Article  PubMed  Google Scholar 

  13. Nehler MR, Hiatt WR, Taylor LM. Is revascularization and limb salvage always the best treatment for critical limb ischemia? J Vasc Surg. 2003;37(3):704–8.

    Article  PubMed  Google Scholar 

  14. Valentine RJ, Grayburn PA, Eichhorn EJ, et al. Coronary artery disease is highly prevalent among patients with premature peripheral vascular disease. J Vasc Surg. 1994;19:668–74.

    Article  CAS  PubMed  Google Scholar 

  15. Klop RB, Eikelboom BC, Taks AC. Screening of the internal carotid arteries in patients with peripheral vascular disease by colour-flow duplex scanning. Eur J Vasc Surg. 1991;5:41–5.

    Article  CAS  PubMed  Google Scholar 

  16. Alexandrova NA, Gibson WC, Norris JW, et al. Carotid artery stenosis in peripheral vascular disease. J Vasc Surg. 1996;23:645–9.

    Article  CAS  PubMed  Google Scholar 

  17. Cheng SW, Wu LL, Ting AC, et al. Screening for asymptomatic carotid stenosis in patients with peripheral vascular disease: a prospective study and risk factor analysis. Cardiovasc Surg. 1999;7:303–9.

    Article  CAS  PubMed  Google Scholar 

  18. Leng GC, Lee AJ, Fowkes FG, et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int J Epidemiol. 1996;25:1172–81.

    Article  CAS  PubMed  Google Scholar 

  19. Kornitzer M, Dramaix M, Sobolski J, Degre S, De Backer G. Ankle/arm pressure index in asymptomatic middle-aged males: an independent predictor of ten-year coronary heart disease mortality. Angiology. 1995;46:211–9.

    Article  CAS  PubMed  Google Scholar 

  20. Newman AB, Sutton-Tyrrell K, Vogt MT, Kuller LH. Morbidity and mortality in hypertensive adults with a low ankle/arm blood pressure index. JAMA. 1993;270:487–9.

    Article  CAS  PubMed  Google Scholar 

  21. Criqui MH, Langer RD, Fronek A, et al. Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med. 1992;326:381–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kaul P, Armstrong PW, Chang WC, Naylor CD, Granger CB, Lee KL, et al. Long-term mortality of patients with acute myocardial infarction in the United States and Canada: comparison of patients enrolled in Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I. Circulation. 2004;110:1754–60.

    Article  PubMed  Google Scholar 

  23. Diehm N, Baumgartner I, Jaff M, Do DD, Minar E, Schmidli J, et al. A call for uniform reporting standards in studies assessing endovascular treatment for chronic ischaemia of lower limb arteries. Eur Heart J. 2007;28:798–805.

    Article  PubMed  Google Scholar 

  24. Ali FN, Carman TL. Medical management of chronic atherosclerotic peripheral arterial disease. Drugs. 2012;72(16):2073–85.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Chen J, Han C. A multicenter clinical trial of recombinant human GM-CSF hydrogel for the treatment of deep second degree burns. Wound Repair Regen. 2009;17:685.

    Article  PubMed  Google Scholar 

  26. Soderstrom M, Aho PS, Lepantalo M, Alback A. The influence of the characteristics of ischemic tissue lesions on ulcer healing time after infrainguinal bypass for critical leg ischemia. J Vasc Surg. 2009;49:932–7.

    Article  PubMed  Google Scholar 

  27. Soderstrom M, Arvela E, Alback A, Aho PS, Lepantalo M. Healing of ischaemic tissue lesions after infrainguinal bypass surgery for critical limb ischaemia. Eur J Vasc Endovasc Surg. 2008;36:90–5.

    Article  CAS  PubMed  Google Scholar 

  28. CAPRIE Steering Committee. A randomized, blinded, trial of clopidogrel vs aspirin in patients at risk of ischaemic events (CAPRIE). CAPRIE Steering Committee. Lancet. 1996;348:1329–39.

    Article  Google Scholar 

  29. Dean SM, Satiani B. Three cases of digital ischemia successfully treated with cilostazol. Vasc Med. 2001;6(4):245–8.

    Article  CAS  PubMed  Google Scholar 

  30. Dean SM, Vaccaro PS. Successful pharmacologic treatment of lower extremity ulcerations in 5 patients with chronic critical limb ischemia. J Am Board Fam Pract. 2002;15(1):55–62.

    PubMed  Google Scholar 

  31. Miyashita Y, Saito S, Miyamoto A, et al. Cilostazol increases skin perfusion pressure in severely ischemic limbs. Angiology. 2011;62(1):15–7.

    Article  PubMed  Google Scholar 

  32. Soga Y, Iida O, Hirano K, et al. Impact of cilostazol after endovascular treatments for infrainguinal disease in patients with critical limb ischemia. J Vasc Surg. 2011;54(6):1659–67.

    Article  PubMed  Google Scholar 

  33. Soga Y, Iida O, Kawasaki D, et al. Impact of cilostazol on angiographic restenosis after balloon angioplasty for infrapopliteal artery disease in patients with critical limb ischemia. Eur J Vasc Endovasc Surg. 2012;44(6):577–81.

    Article  CAS  PubMed  Google Scholar 

  34. Norwegian Pentoxifylline Multicenter Trial Group. Efficacy and clinical tolerability of parenteral pentoxifylline in the treatment of critical lower limb ischemia: a placebo controlled multicenter study. Int Angiol. 1996;15(1):75–80.

    Google Scholar 

  35. The European Study Group. Intravenous pentoxifylline for the treatment of chronic critical limb ischemia. Eur J Vasc Endovasc Surg. 1995;9(4):426–36.

    Article  Google Scholar 

  36. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter Society Consensus; and Vascular Disease Foundation. Circulation. 2006;113:e463–654.

    Article  PubMed  Google Scholar 

  37. Ruffolo AJ, Romano M, Ciapponi A. Prostanoids for critical limb ischaemia. Cochrane Database Syst Rev. 2010;(1):CD006544.

    Google Scholar 

  38. Faglia E, Clerici G, Scatena A, et al. Effectiveness of combined therapy with angiotensin-converting enzyme inhibitors and statins in reducing mortality in diabetic patients with critical limb ischemia: an observational study. Diabetes Res Clin Pract. 2014;103:292–7. doi:10.1016/j.diabres.2013.12.060.

    Article  CAS  PubMed  Google Scholar 

  39. Tomoi Y, Soga Y, Iida O, et al. Efficacy of statin treatment after endovascular therapy for isolated below-the-knee disease in patients with critical limb ischemia. Cardiovasc Interv Ther. 2013;28(4):374–82.

    Article  CAS  PubMed  Google Scholar 

  40. Koppensteiner R, Spring S, Amann-Vesti BR, et al. Low-molecular-weight heparin for prevention of restenosis after femoropopliteal percutaneous transluminal angioplasty: a randomized controlled trial. J Vasc Surg. 2006;44:1247–53.

    Article  PubMed  Google Scholar 

  41. Tangelder MJ, Lawson JA, Algra A, et al. Systematic review of randomized controlled trials of aspirin and oral anticoagulants in the prevention of graft occlusion and ischemic events after infrainguinal bypass surgery. J Vasc Surg. 1999;30:701–9.

    Article  CAS  PubMed  Google Scholar 

  42. Brown J, Lethaby A, Maxwell H, et al. Antiplatelet agents for preventing thrombosis after peripheral arterial bypass surgery. Cochrane Database Syst Rev. 2008;(8):CD000535.

    Google Scholar 

  43. Clagett GP, Sobel M, Jackson MR, et al. Antithrombotic therapy in peripheral arterial occlusive disease: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126(3 Suppl):609S–26.

    Article  CAS  PubMed  Google Scholar 

  44. Belch JJ, Dormandy J, Biasi GM, et al. Results of the randomized, placebo-controlled clopidogrel and acetylsalicylic acid in bypass surgery for peripheral arterial disease (CASPAR) trial. J Vasc Surg 2010;52: 825–33, 833.e1–2.

    Google Scholar 

  45. Schanzer A, Hevelone N, Owens CD, Beckman JA, Belkin M, Conte MS. Statins are independently associated with reduced mortality in patients undergoing infrainguinal bypass graft surgery for critical limb ischemia. J Vasc Surg. 2008;47:774–81.

    Article  PubMed  Google Scholar 

  46. Ramo OJ, Juha L, Marti S, Hannu H, Pauliina RM, Risto M. Effects of lovastatin in prevention of restenosis after percutaneous transluminal angioplasty in lower limbs. Int J Angiol. 1995;4:173–6.

    Article  Google Scholar 

  47. Fusaro M, Cassese S, Ndrepepa G, et al. Drug-eluting stents for revascularization of infrapopliteal arteries. Updated meta-analysis of randomized trials. J Am Coll Cardiol Intv. 2013;6:1284–93.

    Article  Google Scholar 

  48. Arvela E, Dick F. Surveillance after distal revascularization for critical limb ischaemia. Scand J Surg. 2012;101:119–24.

    Article  CAS  PubMed  Google Scholar 

  49. Dorffler-Melly J, Koopman MM, Prins MH, Buller HR. Antiplatelet and anticoagulant drugs for prevention of restenosis/reocclusion following peripheral endovascular treatment. Cochrane Database Syst Rev. 2005;1:CD002071.

    Google Scholar 

  50. Alonso-Coello P, Bellmunt S, McGorrian C, et al. Antithrombotic therapy in peripheral artery disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2012;141:669–90.

    Article  Google Scholar 

  51. Visona A, Tonello D, Zalunardo B, et al. Antithrombotic treatment before and after peripheral artery percutaneous angioplasty. Blood Transfus. 2009;7:18–23.

    PubMed  PubMed Central  Google Scholar 

  52. Efficacy of oral anticoagulants compared with aspirin after infrainguinal bypass surgery Aspirin (BOA) Study Group: a randomised trial. Lancet 2000;355:346–51.

    Google Scholar 

  53. Spiliopoulos S, Katsanos K, Pastromas G, et al. Initial experience in patients with critical limb ischemia and high on-clopidogrel platelet reactivity undergoing complex peripheral endovascular procedures. Cardiovasc Intervent Radiol. 2014. doi:10.1007/s00270-014-0852-y.

    Google Scholar 

  54. Geraghty AJ, Welch K. Antithrombotic agents for preventing thrombosis after infrainguinal arterial bypass surgery. Cochrane Database Syst Rev. 2011;(6):CD000536.

    Google Scholar 

  55. Waters PS, Fennessey PJ, Hynes N, et al. The effects of normalizing hyperhomocysteinemia on clinical and operative outcomes in patients with critical limb ischemia. J Endovasc Ther. 2012;19(6):815–25.

    Article  PubMed  Google Scholar 

  56. Attanasio S, Snell J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev. 2009;17(3):115–20.

    Article  PubMed  Google Scholar 

  57. Marui A, Tabata Y, Kojima S, et al. A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phase I–IIa study. Circ J. 2007;71:1181–6.

    Article  CAS  PubMed  Google Scholar 

  58. Gu Y, Zhang J, Guo L, et al. A phase I clinical study of naked DNA expressing two isoforms of hepatocyte growth factor to treat patients with critical limb ischemia. J Gene Med. 2011;13:602–10.

    Article  CAS  PubMed  Google Scholar 

  59. Henry TD, Hirsch AT, Goldman J, et al. Safety of a non-viral plasmid-encoding dual isoforms of hepatocyte growth factor in critical limb ischemia patients: a phase I study. Gene Ther. 2011;18:788–94.

    Article  CAS  PubMed  Google Scholar 

  60. Shigematsu H, Yasuda K, Sasajima T, et al. Transfection of human HGF plasmid DNA improves limb salvage in Buerger’s disease patients with critical limb ischemia. Int Angiol. 2011;30:140–9.

    CAS  PubMed  Google Scholar 

  61. Morishita R, Makino H, Aoki M, et al. Phase I/IIa clinical trial of therapeutic angiogenesis using hepatocyte growth factor gene transfer to treat critical limb ischemia. Arterioscler Thromb Vasc Biol. 2011;31:713–20.

    Article  CAS  PubMed  Google Scholar 

  62. Muona K, Makinen K, Hedman M, Manninen H, Yla-Herttuala S. 10-Year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb. Gene Ther. 2012;19:392–5.

    Article  CAS  PubMed  Google Scholar 

  63. Niebuhr A, Henry T, Goldman J, et al. Long-term safety of intramuscular gene transfer of non-viral FGF1 for peripheral artery disease. Gene Ther. 2012;19:264–70.

    Article  CAS  PubMed  Google Scholar 

  64. Anghel A, Taranu G, Seclaman E, et al. Safety of vascular endothelial and hepatocyte growth factor gene therapy in patients with critical limb ischemia. Curr Neurovasc Res. 2011;8:183–9.

    Article  CAS  PubMed  Google Scholar 

  65. Powell RJ, Goodney P, Mendelsohn FO, Moen EK, Annex BH. Safety and efficacy of patient specific intramuscular injection of HGF plasmid gene therapy on limb perfusion and wound healing in patients with ischemic lower extremity ulceration: results of the HGF-0205 trial. J Vasc Surg. 2010;52:1525–30.

    Article  PubMed  Google Scholar 

  66. Shigematsu H, Yasuda K, Iwai T, et al. Randomized, doubleblind, placebo-controlled clinical trial of hepatocyte growth factor plasmid for critical limb ischemia. Gene Ther. 2010;17:1152–61.

    Article  CAS  PubMed  Google Scholar 

  67. Powell RJ, Simons M, Mendelsohn FO, et al. Results of a double-blind, placebo-controlled study to assess the safety of intramuscular injection of hepatocyte growth factor plasmid to improve limb perfusion in patients with critical limb ischemia. Circulation. 2008;118:58–65.

    Article  CAS  PubMed  Google Scholar 

  68. Nikol S, Baumgartner I, Van Belle E, et al. Therapeutic angiogenesis with intramuscular NV1FGF improves amputation- free survival in patients with critical limb ischemia. Mol Ther. 2008;16:972–8.

    Article  CAS  PubMed  Google Scholar 

  69. Belch J, Hiatt WR, Baumgartner I, et al. Effect of fibroblast growth factor NV1FGF on amputation and death: a randomised placebo-controlled trial of gene therapy in critical limb ischaemia. Lancet. 2011;377:1929–37.

    Article  CAS  PubMed  Google Scholar 

  70. Kusumanto YH, van Weel V, Mulder NH, et al. Treatment with intramuscular vascular endothelial growth factor gene compared with placebo for patients with diabetes mellitus and critical limb ischemia: a double-blind randomized trial. Hum Gene Ther. 2006;17:683–91.

    Article  CAS  PubMed  Google Scholar 

  71. Tongers J, Roncalli JG, Losordo DW. Therapeutic angiogenesis for critical limb ischemia; microvascular therapies coming of age. Circulation. 2008;118:9–16.

    Article  PubMed  Google Scholar 

  72. Fowkes FG, Price JF. Gene therapy for critical limb ischaemia: the TAMARIS trial. Lancet. 2011;377(9781):1894–6.

    Article  PubMed  Google Scholar 

  73. Lawall H, Bramlage P, Amann B. Treatment of peripheral arterial disease using stem and progenitor cell therapy. J Vasc Surg. 2011;53(2):445–53.

    Article  PubMed  Google Scholar 

  74. Bura A, Planat-Benard V, Bourin P, et al. Phase 1 trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy. 2014;16(2):245–57.

    Article  CAS  PubMed  Google Scholar 

  75. Walter DH, Krankenberg H, Balzer JO, et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4(1):26–37.

    Article  PubMed  Google Scholar 

  76. Lu D, Chen B, Liang Z, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26–36.

    Article  PubMed  Google Scholar 

  77. Powell RJ, Comerota AJ, Berceli SA, et al. Interim analysis results from RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in critical limb ischemia. J Vasc Surg. 2011;54(4):1032–41.

    Article  PubMed  Google Scholar 

  78. Perin EC, Silva G, Gahremanpour A, et al. A randomized, controlled study of autologous therapy with bone marrow-derived aldehyde dehydrogenase bright cells in patients with critical limb ischemia. Catheter Cardiovasc Interv. 2011;78(7):1060–7.

    Article  PubMed  Google Scholar 

  79. Fadini GP, Tjwa M. A role for TGF-beta in transforming endothelial progenitor cells into neointimal smooth muscle cells. Atherosclerosis. 2010;211(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  80. Moazzami K, Majdzadeh R, Nedjat S. Local intramuscular transplantation of autologous mononuclear cells for critical lower limb ischaemia. Cochrane Database Syst Rev. 2011;(12):CD008347.

    Google Scholar 

  81. Sprengers RW, Lips DJ, Moll FL, Verhaar MC. Progenitor cell therapy in patients with critical limb ischemia without surgical options. Ann Surg. 2008;247(3):411–20.

    Article  PubMed  Google Scholar 

  82. Powell RJ. Update on clinical trials evaluating the effect of biologic therapy in patients with critical limb ischemia. J Vasc Surg. 2012;56:264–6.

    Article  PubMed  Google Scholar 

  83. Kranke P, Bennett M, Martyn-St James M, et al. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst Rev. 2012;4:CD004123.

    Google Scholar 

  84. Slovut DP, Sullivan TM. Critical limb ischemia: medical and surgical management. Vasc Med. 2008;13(3):281–91.

    Article  PubMed  Google Scholar 

  85. Petrakis IE, Sciacca V. Spinal cord stimulation in critical limb ischemia of the lower extremities: our experience. J Neurosurg Sci. 1999;43(4):285–93.

    CAS  PubMed  Google Scholar 

  86. Tshomba Y, Psacharopulo D, Frezza S, et al. Predictors of improved quality of life and claudication in patients undergoing spinal cord stimulation for critical lower limb ischemia. Ann Vasc Surg. 2013. doi:10.1016/j.avsg.2013.06.020.

    PubMed  Google Scholar 

  87. Ubbink DT, Vermeulen H. Spinal cord stimulation for non-reconstructable chronic critical let ischaemia. Cochrane Database Syst Rev. 2003;(3):CD004001.

    Google Scholar 

  88. Kovros SJ, Delis KT, Turner NS, et al. Improving limb salvage in critical ischemia with intermittent pneumatic compression: a controlled study with 18-month follow-up. J Vasc Surg. 2008;47:543–9.

    Article  Google Scholar 

  89. Tawfick WA, Hamada N, Soylu E, et al. Sequential compression biomechanical device versus primary amputation in patients with critical limb ischemia. Vasc Endovascular Surg. 2013;47(7):532–9.

    Article  PubMed  Google Scholar 

  90. Taylor SM, Kalbaugh CA, Blackhurt DW, Cass AL, Trent EA, Langan 3rd EM, et al. Determinants of functional outcome after revascularization for critical limb ischemia: an analysis of 1000 consecutive vascular interventions. J Vasc Surg. 2006;44:747–55.

    Article  PubMed  Google Scholar 

  91. Goodney PP, Likosky DS, Cronenwett JL. Predicting ambulation status one year after lower extremity bypass. J Vasc Surg. 2009;49(6):1431–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Diaz-Sandoval, L.J. (2017). The Long-Term Care of Patients with Critical Limb Ischemia (CLI). In: Dieter, R., Dieter, Jr, R., Dieter, III, R., Nanjundappa, A. (eds) Critical Limb Ischemia. Springer, Cham. https://doi.org/10.1007/978-3-319-31991-9_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31991-9_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31989-6

  • Online ISBN: 978-3-319-31991-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics