Skip to main content

The Gonadal Supporting Cell Lineage and Mammalian Sex Determination: The Differentiation of Sertoli and Granulosa Cells

  • Chapter
  • First Online:
Molecular Mechanisms of Cell Differentiation in Gonad Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 58))

Abstract

The supporting cell lineage plays a crucial role in nurturing the development of germ cells in the adult gonad. Sertoli cells in the testis support the progression of spermatogonial stem cells through meiosis to the production of motile spermatozoa. Granulosa cells, meanwhile, are a critical component of the ovarian follicle that produces the mature oocyte. It is a distinctive feature of the embryonic gonad that at least some of the supporting cells are derived from a single sexually bipotential precursor lineage. It is the commitment of this somatic lineage to either the Sertoli or granulosa cell fate that defines sex determination. In this chapter we review what is known about the key molecules responsible for this lineage decision in the developing mammalian gonads, relying primarily on data from studies of mice and humans. We focus on recent advances in our understanding of the mutually antagonistic interactions of testis- and ovary-determining pathways and their complexity as revealed by genetic analyses. For the sake of simplicity, we will deal with supporting cells in testis and ovary development in separate sections, but numerous points of contact exist between these accounts of gonadogenesis in male and female embryos, primarily due to the aforementioned mutual antagonisms. The final section will offer a brief synthesis of these organ-specific overviews and a summary of the key themes that emerge in this review of supporting cell differentiation in mammalian sex determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107

    Article  CAS  PubMed  Google Scholar 

  • Auguste A, Chassot AA, Gregoire EP et al (2011) Loss of R-spondin1 and Foxl2 amplifies female-to-male sex reversal in XX mice. Sex Dev 5:304–317

    Article  CAS  PubMed  Google Scholar 

  • Bardoni B, Zanaria E, Guioli S et al (1994) A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7:497–501

    Article  CAS  PubMed  Google Scholar 

  • Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74:195–201

    Article  CAS  PubMed  Google Scholar 

  • Benko S, Gordon CT, Amiel J, Lyonnet S (2011) Disruption of a long distance regulatory region upstream of SOX9 in isolated disorders of sex development. J Med Genet 48:825–830. doi:10.1136/jmedgenet-2011-100255

    Article  CAS  PubMed  Google Scholar 

  • Bernard P, Ryan J, Sim H, Czech DP, Sinclair AH, Koopman P, Harley VR (2012) Wnt signaling in ovarian development inhibits Sf1 activation of Sox9 via the Tesco enhancer. Endocrinology 153:901–912

    Article  CAS  PubMed  Google Scholar 

  • Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450

    Article  CAS  PubMed  Google Scholar 

  • Bhandari RK, Haque MM, Skinner MK (2012) Global genome analysis of the downstream binding targets of testis determining factor SRY and SOX9. PLoS One 7:e43380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birk OS, Casiano DE, Wassif CA et al (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913

    Article  CAS  PubMed  Google Scholar 

  • Bishop CE, Whitworth DJ, Qin Y et al (2000) A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26:490–494

    Article  CAS  PubMed  Google Scholar 

  • Bogani D, Siggers P, Brixey R et al (2009) Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4) reveals a requirement for MAPK signalling in mouse sex determination. PLoS Biol 7:e1000196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boulanger L, Pannetier M, Gall L et al (2014) FOXL2 is a female sex-determining gene in the goat. Curr Biol 24:404–408

    Article  CAS  PubMed  Google Scholar 

  • Bouma GJ, Washburn LL, Albrecht KH, Eicher EM (2007) Correct dosage of Fog2 and Gata4 transcription factors is critical for fetal testis development in mice. Proc Natl Acad Sci U S A 104:14994–14999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouma GJ, Hudson QJ, Washburn LL, Eicher EM (2010) New candidate genes identified for controlling mouse gonadal sex determination and the early stages of granulosa and Sertoli cell differentiation. Biol Reprod 82:380–389

    Article  CAS  PubMed  Google Scholar 

  • Bullejos M, Koopman P (2001) Spatially dynamic expression of Sry in mouse genital ridges. Dev Dyn 221:201–205

    Article  CAS  PubMed  Google Scholar 

  • Buscara L, Montazer-Torbati F, Chadi S et al (2009) Goat RSPO1 over-expression rescues sex-reversal in Rspo1-knockout XX mice but does not perturb testis differentiation in XY or sex-reversed XX mice. Transgenic Res 18:649–654

    Article  CAS  PubMed  Google Scholar 

  • Carmon KS, Gong X, Lin Q, Thomas A, Liu Q (2011) R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108:11452–11457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaboissier MC, Kobayashi A, Vidal VI et al (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131:1891–1901

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Roy SK (2015) Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary. Sci Rep 5:12664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chassot AA, Ranc F, Gregoire EP et al (2008) Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary. Hum Mol Genet 17:1264–1277

    Article  CAS  PubMed  Google Scholar 

  • Chen PH, Chen X, Lin Z, Fang D, He X (2013) The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 27:1345–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clépet C, Schafer AJ, Sinclair AH, Palmer MS, Lovell-Badge R, Goodfellow PN (1993) The human SRY transcript. Hum Mol Genet 2:2007–2012

    Article  PubMed  Google Scholar 

  • Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889

    Article  CAS  PubMed  Google Scholar 

  • Combes AN, Wilhelm D, Davidson T, Dejana E, Harley V, Sinclair A, Koopman P (2009) Endothelial cell migration directs testis cord formation. Dev Biol 326:112–120

    Article  CAS  PubMed  Google Scholar 

  • Cool J, Carmona FD, Szucsik JC, Capel B (2008) Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2:128–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cool J, DeFalco T, Capel B (2012) Testis formation in the fetal mouse: dynamic and complex de novo tubulogenesis Wiley interdisciplinary reviews. Dev Biol 1:847–859

    Google Scholar 

  • da Silva SM, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14:62–67

    Article  Google Scholar 

  • de Lau W, Barker N, Low TY et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–297

    Article  PubMed  CAS  Google Scholar 

  • Foster JW, Dominguez-Steglich MA, Guioli S et al (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto Y, Tanaka SS, Yamaguchi YL et al (2013) Homeoproteins six1 and six4 regulate male sex determination and mouse gonadal development. Dev Cell 26:416–430

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ortiz JE, Pelosi E, Omari S et al (2009) Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev Biol 9:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Georg I, Bagheri-Fam S, Knower KC, Wieacker P, Scherer G, Harley VR (2010) Mutations of the SRY-responsive enhancer of SOX9 are uncommon in XY gonadal dysgenesis. Sex Dev 4:321–325

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg M, Snow MH, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110:521–528

    CAS  PubMed  Google Scholar 

  • Hacker A, Capel B, Goodfellow P, Lovell-Badge R (1995) Expression of Sry, the mouse testis-determining gene. Development 121:1603–1614

    CAS  PubMed  Google Scholar 

  • Hammes A, Guo JK, Lutsch G et al (2001) Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329

    Article  CAS  PubMed  Google Scholar 

  • Heikkila M, Peltoketo H, Leppaluoto J, Ilves M, Vuolteenaho O, Vainio S (2002) Wnt-4 deficiency alters mouse adrenal cortex function, reducing aldosterone production. Endocrinology 143:4358–4365

    Article  CAS  PubMed  Google Scholar 

  • Heikkila M, Prunskaite R, Naillat F et al (2005) The partial female to male sex reversal in Wnt-4-deficient females involves induced expression of testosterone biosynthetic genes and testosterone production, and depends on androgen action. Endocrinology 146:4016–4023

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu R, Matoba S, Kanai-Azuma M et al (2008) A critical time window of Sry action in gonadal sex determination in mice. Development 136:129–138

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu R, Harikae K, Tsunekawa N, Kurohmaru M, Matsuo I, Kanai Y (2010) FGF signaling directs a center-to-pole expansion of tubulogenesis in mouse testis differentiation. Development 137:303–312

    Article  CAS  PubMed  Google Scholar 

  • Hu YC, Okumura LM, Page DC (2013) Gata4 is required for formation of the genital ridge in mice. PLoS Genet 9:e1003629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Wang S, Ning Y, Lamb AN, Bartley J (1999) Autosomal XX sex reversal caused by duplication of SOX9. Am J Med Genet 87:349–353

    Article  CAS  PubMed  Google Scholar 

  • Hyon C, Chantot-Bastaraud S, Harbuz R et al (2015) Refining the regulatory region upstream of SOX9 associated with 46,XX testicular disorders of sex development (DSD). Am J Med Genet A 167:1851–1858

    Article  CAS  Google Scholar 

  • Jameson SA, Lin YT, Capel B (2012a) Testis development requires the repression of Wnt4 by Fgf signaling. Dev Biol 370:24–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jameson SA, Natarajan A, Cool J et al (2012b) Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad. PLoS Genet 8:e1002575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeays-Ward K, Hoyle C, Brennan J, Dandonneau M, Alldus G, Capel B, Swain A (2003) Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130:3663–3670

    Article  CAS  PubMed  Google Scholar 

  • Jeays-Ward K, Dandonneau M, Swain A (2004) Wnt4 is required for proper male as well as female sexual development. Dev Biol 276:431–440

    Article  CAS  PubMed  Google Scholar 

  • Jeske YWA, Bowles J, Greenfield A, Koopman P (1995) Expression of a linear Sry transcript in the mouse genital ridge. Nat Genet 10:480–482

    Article  CAS  PubMed  Google Scholar 

  • Jordan BK, Mohammed M, Ching ST et al (2001) Up-regulation of WNT-4 signaling and dosage-sensitive sex reversal in humans. Am J Hum Genet 68:1102–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan BK, Shen JH, Olaso R, Ingraham HA, Vilain E (2003) Wnt4 overexpression disrupts normal testicular vasculature and inhibits testosterone synthesis by repressing steroidogenic factor 1/beta-catenin synergy. Proc Natl Acad Sci U S A 100:10866–10871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from the coelomic epithelium. Dev Biol 203:323–333

    Article  CAS  PubMed  Google Scholar 

  • Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K, Higashinakagawa T (1998) Male-to-female sex reversal in M33 mutant mice. Nature 393:688–692

    Article  CAS  PubMed  Google Scholar 

  • Katoh-Fukui Y, Miyabayashi K, Komatsu T et al (2012) Cbx2, a polycomb group gene, is required for Sry gene expression in mice. Endocrinology 153:913–924

    Article  CAS  PubMed  Google Scholar 

  • Kaufman MH (1992) The atlas of mouse development. Elsevier Academic, London

    Google Scholar 

  • Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P (1996) A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–2822

    CAS  PubMed  Google Scholar 

  • Kim Y, Kobayashi A, Sekido R et al (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kocer A, Pinheiro I, Pannetier M et al (2008) R-spondin1 and FOXL2 act into two distinct cellular types during goat ovarian differentiation. BMC Dev Biol 8:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    Article  CAS  PubMed  Google Scholar 

  • Kusaka M, Katoh-Fukui Y, Ogawa H et al (2010) Abnormal epithelial cell polarity and ectopic epidermal growth factor receptor (EGFR) expression induced in Emx2 KO embryonic gonads. Endocrinology 151:5893–5904

    Article  CAS  PubMed  Google Scholar 

  • Larney C, Bailey TL, Koopman P (2014) Switching on sex: transcriptional regulation of the testis-determining gene Sry. Development 141:2195–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavery R, Chassot AA, Pauper E et al (2012) Testicular differentiation occurs in absence of R-spondin1 and Sox9 in mouse sex reversals. PLoS Genet 8:e1003170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zheng M, Lau YF (2014) The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep 8:723–733

    Article  CAS  PubMed  Google Scholar 

  • Lindeman RE, Gearhart MD, Minkina A, Krentz AD, Bardwell VJ, Zarkower D (2015) Sexual cell-fate reprogramming in the ovary by DMRT1. Curr Biol 25:764–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CF, Bingham N, Parker K, Yao HH (2009) Sex-specific roles of beta-catenin in mouse gonadal development. Hum Mol Genet 18:405–417

    Article  CAS  PubMed  Google Scholar 

  • Lovell-Badge R, Robertson E (1990) XY female mice resulting from a heritable mutation in the murine primary testis determining gene, Tdy. Development 109:635–646

    CAS  PubMed  Google Scholar 

  • Ludbrook LM, Harley VR (2004) Sex determination: a ‘window’ of DAX1 activity. Trends Endocrinol Metab 15:116–121

    Article  CAS  PubMed  Google Scholar 

  • Ludbrook LM, Bernard P, Bagheri-Fam S et al (2012) Excess DAX1 leads to XY ovotesticular disorder of sex development (DSD) in mice by inhibiting steroidogenic factor-1 (SF1) activation of the testis enhancer of SRY-box-9 (Sox9). Endocrinology 153:1948–1958

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Ikeda Y, Parker KL (1994) A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481–490

    Article  CAS  PubMed  Google Scholar 

  • Lybaek H, de Bruijn D, den Engelsman-van Dijk AH, Vanichkina D, Nepal C, Brendehaug A, Houge G (2014) RevSex duplication-induced and sex-related differences in the SOX9 regulatory region chromatin landscape in human fibroblasts. Epigenetics 9:416–427

    Article  CAS  PubMed  Google Scholar 

  • Maatouk DM, Dinapoli L, Alvers A, Parker KL, Taketo MM, Capel B (2008) Stabilization of {beta}-catenin in XY gonads causes male-to-female sex-reversal. Hum Mol Genet 17:2949–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maatouk DM, Mork L, Chassot AA, Chaboissier MC, Capel B (2013) Disruption of mitotic arrest precedes precocious differentiation and transdifferentiation of pregranulosa cells in the perinatal Wnt4 mutant ovary. Dev Biol 383:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manuylov NL, Smagulova FO, Leach L, Tevosian SG (2008) Ovarian development in mice requires the GATA4-FOG2 transcription complex. Development 135:3731–3743

    Article  CAS  PubMed  Google Scholar 

  • Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476:101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaren A (1991) Development of the mammalian gonad: the fate of the supporting cell lineage. Bioessays 13:151–156

    Article  CAS  PubMed  Google Scholar 

  • Meeks JJ, Weiss J, Jameson JL (2003) Dax1 is required for testis determination. Nat Genet 34:32–33

    Article  CAS  PubMed  Google Scholar 

  • Minkina A, Matson CK, Lindeman RE, Ghyselinck NB, Bardwell VJ, Zarkower D (2014) DMRT1 protects male gonadal cells from retinoid-dependent sexual transdifferentiation. Dev Cell 29:511–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moniot B, Declosmenil F, Barrionuevo F et al (2009) The PGD2 pathway, independently of FGF9, amplifies SOX9 activity in Sertoli cells during male sexual differentiation. Development 136:1813–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mork L, Maatouk DM, McMahon JA, Guo JJ, Zhang P, McMahon AP, Capel B (2012) Temporal differences in granulosa cell specification in the ovary reflect distinct follicle fates in mice. Biol Reprod 86:37

    Article  PubMed  CAS  Google Scholar 

  • Murphy MW, Lee JK, Rojo S et al (2015) An ancient protein-DNA interaction underlying metazoan sex determination. Nat Struct Mol Biol 22:442–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muscatelli F, Strom TM, Walker AP et al (1994) Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372:672–676

    Article  CAS  PubMed  Google Scholar 

  • Naillat F, Prunskaite-Hyyrylainen R, Pietila I, Sormunen R, Jokela T, Shan J, Vainio SJ (2010) Wnt4/5a signalling coordinates cell adhesion and entry into meiosis during presumptive ovarian follicle development. Hum Mol Genet 19:1539–1550

    Article  CAS  PubMed  Google Scholar 

  • Nef S, Schaad O, Stallings NR et al (2005) Gene expression during sex determination reveals a robust female genetic program at the onset of ovarian development. Dev Biol 287:361–377

    Article  CAS  PubMed  Google Scholar 

  • Nicol B, Yao HH (2015) Gonadal identity in the absence of pro-testis factor SOX9 and pro-ovary factor beta-catenin in mice. Biol Reprod 93:35

    Article  PubMed  CAS  Google Scholar 

  • Ottolenghi C, Veitia R, Quintana-Murci L et al (2000) The region on 9p associated with 46,XY sex reversal contains several transcripts expressed in the urogenital system and a novel doublesex-related domain. Genomics 64:170–178

    Article  CAS  PubMed  Google Scholar 

  • Ottolenghi C, Pelosi E, Tran J et al (2007) Loss of Wnt4 and Foxl2 leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 16:2795–2804

    Article  CAS  PubMed  Google Scholar 

  • Pailhoux E, Vigier B, Chaffaux S et al (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29:453–458

    Article  CAS  PubMed  Google Scholar 

  • Palmer SJ, Burgoyne PS (1991) In situ analysis of fetal, prepuberal and adult XX–XY chimaeric mouse testes: Sertoli cells are predominantly, but not exclusively, XY. Development 112:265–268

    CAS  PubMed  Google Scholar 

  • Parma P, Radi O, Vidal V et al (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Rastetter RH, Bernard P, Palmer JS et al (2014) Marker genes identify three somatic cell types in the fetal mouse ovary. Dev Biol 394:242–252

    Article  CAS  PubMed  Google Scholar 

  • Raymond CS, Murphy MW, O’Sullivan MG, Bardwell VJ, Zarkower D (2000) Dmrt1, a gene related to worm and fly sexual regulators, is required for mammalian testis differentiation. Genes Dev 14:2587–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt D, Ovitt CE, Anlag K, Fehsenfeld S, Gredsted L, Treier AC, Treier M (2004) The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131:933–942

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Bar I, Narvaez V, Penny G, Lovell-Badge R (2004) SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274:271–279

    Article  CAS  PubMed  Google Scholar 

  • Sinclair AH, Berta P, Palmer MS et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244

    Article  CAS  PubMed  Google Scholar 

  • Smith CA, Shoemaker CM, Roeszler KN, Queen J, Crews D, Sinclair AH (2008) Cloning and expression of R-Spondin1 in different vertebrates suggests a conserved role in ovarian development. BMC Dev Biol 8:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R (1998) Dax1 antagonizes Sry action in mammalian sex determination. Nature 391:761–767

    Article  CAS  PubMed  Google Scholar 

  • Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH (2002) Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129:4627–4634

    CAS  PubMed  Google Scholar 

  • Tomizuka K, Horikoshi K, Kitada R et al (2008) R-spondin1 plays an essential role in ovarian development through positively regulating Wnt-4 signaling. Hum Mol Genet 17:1278–1291

    Article  CAS  PubMed  Google Scholar 

  • Uda M, Ottolenghi C, Crisponi L et al (2004) Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 13:1171–1181

    Article  CAS  PubMed  Google Scholar 

  • Uhlenhaut NH, Jakob S, Anlag K et al (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142

    Article  CAS  PubMed  Google Scholar 

  • Vainio S, Heikkila M, Kispert A, Chin N, McMahon AP (1999) Female development in mammals is regulated by Wnt-4 signalling. Nature 397:405–409

    Article  CAS  PubMed  Google Scholar 

  • Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217

    Article  CAS  PubMed  Google Scholar 

  • Warr N, Greenfield A (2012) The molecular and cellular basis of gonadal sex reversal in mice and humans WIREs. Dev Biol 1:559–577

    CAS  Google Scholar 

  • Warr N, Carre GA, Siggers P et al (2012) Gadd45gamma and Map3k4 interactions regulate mouse testis determination via p38 MAPK-mediated control of Sry expression. Dev Cell 23:1020–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warr N, Siggers P, Carre GA et al (2014) Transgenic expression of Map3k4 rescues T-associated sex reversal (Tas) in mice. Hum Mol Genet 23:3035–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm D, Martinson F, Bradford S et al (2005) Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev Biol 287:111–124

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, Koopman P (2007) SOX9 regulates prostaglandin D synthase gene transcription in vivo to ensure testis development. J Biol Chem 282:10553–10560

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm D, Washburn LL, Truong V, Fellous M, Eicher EM, Koopman P (2009) Antagonism of the testis- and ovary-determining pathways during ovotestis development in mice. Mech Dev 126:324–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao HH, Matzuk MM, Jorgez CJ, Menke DB, Page DC, Swain A, Capel B (2004) Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev Dyn 230:210–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanaria E, Muscatelli F, Bardoni B et al (1994) An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372:635–641

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chen M, Wen Q et al (2015) Reprogramming of Sertoli cells to fetal-like Leydig cells by Wt1 ablation. Proc Natl Acad Sci U S A 112:4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Ng ET, Davidson TL et al (2014) Structure-function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination. Proc Natl Acad Sci U S A 111:11768–11773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Zhang H, Gorre N, Risal S, Shen Y, Liu K (2014) Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions. Hum Mol Genet 23:920–928

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Greenfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carré, GA., Greenfield, A. (2016). The Gonadal Supporting Cell Lineage and Mammalian Sex Determination: The Differentiation of Sertoli and Granulosa Cells. In: Piprek, R. (eds) Molecular Mechanisms of Cell Differentiation in Gonad Development. Results and Problems in Cell Differentiation, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-319-31973-5_3

Download citation

Publish with us

Policies and ethics