Skip to main content

Two Chromatic Conjectures: One for Vertices and One for Edges

  • Chapter
  • First Online:
Graph Theory

Part of the book series: Problem Books in Mathematics ((PBM))

Abstract

Erdős, Faber, and Lovász conjectured that a pairwise edge-disjoint union of n copies of the complete graph K n has chromatic number n. This seeming parlour puzzle has eluded proof for more than four decades, despite the attack by a few of this era’s more powerful combinatorial minds. Regarding edges, the list-colouring conjecture asserts, loosely, that list colouring is no more difficult than ordinary edge colouring. Probably first proposed by Vizing, this notorious conjecture—also having garnered the attention of leading combinatorialists—has itself defied proof for forty years. Like any good mature conjecture, both of these have spawned interesting mathematics vainly threatening their resolution. This chapter considers some of the related partial results in concert with the conjectures themselves.

This work was partially supported by a grant from the Simons Foundation (#279367 to Mark Kayll).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Erdős’ tradition of offering cash rewards for certain of his favourite problems lives on, now underwritten by Chung and Graham [19] in his honour.

References

  1. Alon, N.: Restricted colorings of graphs. In: Surveys in Combinatorics, 1993 (Keele). London Mathematical Society Lecture Note Series, vol. 187, pp. 1–33. Cambridge University Press, Cambridge (1993). MR 1239230 (94g:05033)

    Book  MATH  Google Scholar 

  2. Alon, N.: Combinatorial Nullstellensatz. Comb. Probab. Comput. 8 (1–2), 7–29 (1999). Recent trends in combinatorics (Mátraháza, 1995). MR 1684621 (2000b:05001)

    Google Scholar 

  3. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12 (2), 125–134 (1992). MR 1179249 (93h:05067)

    Google Scholar 

  4. Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with sparse neighborhoods. J. Comb. Theory Ser. B 77 (1), 73–82 (1999). MR 1710532 (2001a:05054)

    Google Scholar 

  5. Alspach, B.: The wonderful Walecki construction. Bull. Inst. Comb. Appl. 52, 7–20 (2008). MR 2394738

    Google Scholar 

  6. Berge, C. (ed.): Hypergraph Seminar. Lecture Notes in Mathematics, vol. 411. Springer, Berlin/New York (1974). Dedicated to Professor Arnold Ross. MR 0349451 (50 #1945)

    Google Scholar 

  7. Beutelspacher, A., Jungnickel, D., Vanstone, S.A.: On the chromatic index of a finite projective space. Geom. Dedicata. 32 (3), 313–318 (1989). MR 1038405 (90m:05032)

    Google Scholar 

  8. Bollobás, B., Harris, A.J.: List-colourings of graphs. Graphs Comb. 1 (2), 115–127 (1985). MR 951773 (89e:05086)

    Google Scholar 

  9. Bollobás, B., Hind, H.R.: A new upper bound for the list chromatic number. Discret. Math. 74 (1–2), 65–75 (1989). Graph colouring and variations. MR 989123 (90g:05078)

    Google Scholar 

  10. Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, New York (2008). MR 2368647 (2009c:05001)

    Google Scholar 

  11. Borodin, O.V.: A generalization of Kotzig’s theorem and prescribed edge coloring of planar graphs. Mat. Zametki 48 (6), 22–28 (1990). 160. MR 1102617 (92e:05046)

    Google Scholar 

  12. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings of multigraphs. J. Comb. Theory Ser. B 71 (2), 184–204 (1997). MR 1483474 (99d:05028)

    Google Scholar 

  13. de Bruijn, N.G., Erdős, P.: On a combinatorial problem. Ned. Akad. Wet. Proc. 51, 1277–1279 (1948). = Indagationes Math. 10, 421–423 (1948). MR 0028289 (10,424a)

    Google Scholar 

  14. Cariolaro, D., Lih, K.-W.: The edge-choosability of the tetrahedron. Math. Gaz. 92 (525), 543–546 (2008)

    Article  Google Scholar 

  15. Cariolaro, D., Cariolaro, G., Schauz, U., Sun, X.: The list-chromatic index of K 6. Discret. Math. 322, 15–18 (2014). MR 3164031

    Google Scholar 

  16. Chang, W.I., Lawler, E.L.: Edge coloring of hypergraphs and a conjecture of Erdős, Faber, Lovász. Combinatorica 8 (3), 293–295 (1988). MR 963120 (90a:05141)

    Google Scholar 

  17. Chen, Y., Zhu, W., Wang, W.: Edge choosability of planar graphs without 5-cycles with a chord. Discret. Math. 309 (8), 2233–2238 (2009). MR 2510350 (2010h:05252)

    Google Scholar 

  18. Chetwynd, A., Häggkvist, R.: A note on list-colorings. J. Graph Theory 13 (1), 87–95 (1989). MR 982870 (90a:05081)

    Google Scholar 

  19. Chung, F., Graham, R.: Erdős on Graphs. AK Peters, Wellesley (1998). His legacy of unsolved problems. MR 1601954 (99b:05031)

    Google Scholar 

  20. Chvátal, V.: Linear Programming. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York (1983). MR 717219 (86g:90062)

    Google Scholar 

  21. Cranston, D.W.: Edge-choosability and total-choosability of planar graphs with no adjacent 3-cycles. Discuss. Math. Graph Theory 29 (1), 163–178 (2009). MR 2548793 (2011a:05099)

    Google Scholar 

  22. Dinitz, J.H.: Home Page for Jeff Dinitz. Available at www.emba.uvm.edu/~jdinitz/ (2015). [Online; accessed 28 Mar 2015]

  23. Dong, A., Liu, G., Li, G.: List edge and list total colorings of planar graphs without 6-cycles with chord. Bull. Korean Math. Soc. 49 (2), 359–365 (2012). MR 2934486

    Google Scholar 

  24. Eklof, P.C., Mekler, A.H.: Almost Free Modules. North-Holland Mathematical Library, vol. 46. North-Holland Publishing Co., Amsterdam (1990). Set-theoretic methods. MR 1055083 (92e:20001)

    Google Scholar 

  25. Ellingham, M.N., Goddyn, L.: List edge colourings of some 1-factorable multigraphs. Combinatorica 16 (3), 343–352 (1996). MR 1417345 (98a:05068)

    Google Scholar 

  26. Erdős, P.: Problems and results on finite and infinite combinatorial analysis. In: Infinite and Finite Sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), vol. I, pp. 403–424. North-Holland, Amsterdam (1975). Colloq. Math. Soc. János Bolyai, vol. 10. MR 0389607 (52 #10438)

    Google Scholar 

  27. Erdős, P.: Problems and results in graph theory and combinatorial analysis. In: Graph Theory and Related Topics (Proceedings of the Conference, University of Waterloo, Waterloo, Ont., 1977), pp. 153–163. Academic Press, New York/London (1979). MR 538043 (81a:05034)

    Google Scholar 

  28. Erdős, P.: Some old and new problems in various branches of combinatorics. In: Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic University, Boca Raton, 1979). Congressus Numerantium, vol. XXIII–XXIV, pp. 19–37. Utilitas Mathematica, Winnipeg (1979). MR 561032 (81f:05001)

    Google Scholar 

  29. Erdős, P.: On the combinatorial problems which I would most like to see solved. Combinatorica 1 (1), 25–42 (1981). MR 602413 (82k:05001)

    Google Scholar 

  30. Erdős, P.: Some of my favorite problems and results. In: The Mathematics of Paul Erdős, I. Algorithms and Combinatorics, vol. 13, pp. 47–67. Springer, Berlin (1997). MR 1425174 (98e:11002)

    Google Scholar 

  31. Erdős, P., Rubin, A.L., Taylor, H.: Choosability in graphs. In: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State University, Arcata, 1979). Congressus Numerantium, vol. XXVI, pp. 125–157. Utilitas Mathematica, Winnipeg (1980). MR 593902 (82f:05038)

    Google Scholar 

  32. Faber, V.: The Erdős-Faber-Lovász conjecture—the uniform regular case. J. Comb. 1 (2), 113–120 (2010). MR 2732509 (2012c:05221)

    Google Scholar 

  33. Galvin, F.: The list chromatic index of a bipartite multigraph. J. Comb. Theory Ser. B 63 (1), 153–158 (1995). MR 1309363 (95m:05101)

    Google Scholar 

  34. Gutner, S.: M.Sc. thesis, Tel Aviv University, Israel (1992)

    Google Scholar 

  35. Haddad, L., Tardif, C.: A clone-theoretic formulation of the Erdős-Faber-Lovász conjecture. Discuss. Math. Graph Theory 24 (3), 545–549 (2004). MR 2120637 (2005h:05076)

    Google Scholar 

  36. Häggkvist, R.: Towards a solution of the Dinitz problem? Discret. Math. 75 (1–3), 247–251 (1989). Graph theory and combinatorics (Cambridge, 1988). MR 1001399 (90f:05022)

    Google Scholar 

  37. Häggkvist, R., Chetwynd, A.: Some upper bounds on the total and list chromatic numbers of multigraphs. J. Graph Theory 16 (5), 503–516 (1992). MR 1185013 (93i:05060)

    Google Scholar 

  38. Häggkvist, R., Janssen, J.: On the list-chromatic index of bipartite graphs. Technical Report 15, Department of Mathematics, University of Umeå, 24 pp. (1993)

    Google Scholar 

  39. Häggkvist, R., Janssen, J.: New bounds on the list-chromatic index of the complete graph and other simple graphs. Comb. Probab. Comput. 6 (3), 295–313 (1997). MR 1464567 (98i:05076)

    Google Scholar 

  40. Harris, A.J.: Problems and conjectures in extremal graph theory. Ph.D. thesis, University of Cambridge (1985)

    Google Scholar 

  41. Hetherington, T.J., Woodall, D.R.: Edge and total choosability of near-outerplanar graphs. Electron. J. Comb. 13 (1), Research Paper 98, 7 pp. (2006). MR 2274313 (2007h:05058)

    Google Scholar 

  42. Hind, H.R.F.: Restricted edge-colourings. Ph.D. thesis, Peterhouse College, University of Cambridge (1988)

    Google Scholar 

  43. Hindman, N.: On a conjecture of Erdős, Faber, and Lovász about n-colorings. Can. J. Math. 33 (3), 563–570 (1981). MR 627643 (82j:05058)

    Google Scholar 

  44. Hou, J., Liu, G., Cai, J.: List edge and list total colorings of planar graphs without 4-cycles. Theor. Comput. Sci. 369 (1–3), 250–255 (2006). MR 2277573 (2007j:05071)

    Google Scholar 

  45. Irving, R.W., Manlove, D.F.: The b-chromatic number of a graph. Discret. Appl. Math. 91 (1–3), 127–141 (1999). MR 1670155 (2000a:05079)

    Google Scholar 

  46. Jackson, B., Sethuraman, G., Whitehead, C.: A note on the Erdős-Farber-Lovász conjecture. Discret. Math. 307 (7–8), 911–915 (2007). MR 2297176 (2008a:05091)

    Google Scholar 

  47. Janssen, J.C.M.: The Dinitz problem solved for rectangles. Bull. Am. Math. Soc. (N.S.) 29 (2), 243–249 (1993). MR 1215310 (94b:05032)

    Google Scholar 

  48. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1995). A Wiley-Interscience Publication. MR 1304254 (95h:05067)

    Google Scholar 

  49. Juvan, M., Mohar, B., Thomas, R.: List edge-colorings of series-parallel graphs. Electron. J. Comb. 6, Research Paper 42, 6 pp. (1999). MR 1728012 (2000h:05081)

    Google Scholar 

  50. Kahn, J.: Coloring nearly-disjoint hypergraphs with n + o(n) colors. J. Comb. Theory Ser. A 59 (1), 31–39 (1992). MR 1141320 (93b:05127)

    Google Scholar 

  51. Kahn, J.: Recent results on some not-so-recent hypergraph matching and covering problems. In: Extremal Problems for Finite Sets (Visegrád, 1991). Bolyai Society Mathematical Studies, vol. 3, pp. 305–353. János Bolyai Mathematical Society, Budapest (1994). MR 1319170 (96a:05108)

    Google Scholar 

  52. Kahn, J.: Asymptotically good list-colorings. J. Comb. Theory Ser. A 73 (1), 1–59 (1996). MR 1367606 (96j:05001)

    Google Scholar 

  53. Kahn, J.: Asymptotics of the chromatic index for multigraphs. J. Comb. Theory Ser. B 68 (2), 233–254 (1996). MR 1417799 (97g:05078)

    Google Scholar 

  54. Kahn, J.: On some hypergraph problems of Paul Erdős and the asymptotics of matchings, covers and colorings. In: The Mathematics of Paul Erdős, I. Algorithms and Combinatorics, vol. 13, pp. 345–371. Springer, Berlin (1997). MR 1425195 (97m:05193)

    Google Scholar 

  55. Kahn, J.: Asymptotics of the list-chromatic index for multigraphs. Random Struct. Algorithms 17 (2), 117–156 (2000). MR 1774747 (2001f:05066)

    Google Scholar 

  56. Kahn, J., Kayll, P.M.: On the stochastic independence properties of hard-core distributions. Combinatorica 17 (3), 369–391 (1997). MR 1606040 (99e:60034)

    Google Scholar 

  57. Kahn, J., Seymour, P.D.: A fractional version of the Erdős-Faber-Lovász conjecture. Combinatorica 12 (2), 155–160 (1992). MR 1179253 (93g:05108)

    Google Scholar 

  58. Kayll, P.M.: Two chromatic conjectures: one for vertices, one for edges. Joint Mathematics Meetings: AMS Special Session on My Favorite Graph Theory Conjectures, Baltimore MD, 17 Jan 2014. Beamer available at faculty.nps.edu/rgera/Conjectures/JointMeetings-2014/mark-JMM-2014.pdf

  59. Klein, H., Margraf, M.: A remark on the conjecture of Erdős, Faber and Lovász. J. Geom. 88 (1–2), 116–119 (2008). MR 2398480 (2009a:05072)

    Google Scholar 

  60. Kostochka, A.V.: List edge chromatic number of graphs with large girth. Discret. Math. 101 (1–3), 189–201 (1992). Special volume to mark the centennial of Julius Petersen’s “Die Theorie der regulären Graphs”, Part II. MR 1172377 (93e:05033)

    Google Scholar 

  61. Li, R., Xu, B.: Edge choosability and total choosability of planar graphs with no 3-cycles adjacent 4-cycles. Discret. Math. 311 (20), 2158–2163 (2011). MR 2825660 (2012h:05115)

    Google Scholar 

  62. Lin, W.-H., Chang, G.J.: b-coloring of tight bipartite graphs and the Erdős-Faber-Lovász conjecture. Discret. Appl. Math. 161 (7–8), 1060–1066 (2013). MR 3030590

    Google Scholar 

  63. Liu, B., Hou, J., Liu, G.: List edge and list total colorings of planar graphs without short cycles. Inf. Process. Lett. 108 (6), 347–351 (2008). MR 2458420 (2009g:05059)

    Google Scholar 

  64. Liu, B., Hou, J., Wu, J., Liu, G.: Total colorings and list total colorings of planar graphs without intersecting 4-cycles. Discret. Math. 309 (20), 6035–6043 (2009). MR 2552636 (2010k:05092)

    Google Scholar 

  65. Maffray, F.: Kernels in perfect line-graphs. J. Comb. Theory Ser. B 55 (1), 1–8 (1992). MR 1159851 (93i:05061)

    Google Scholar 

  66. Mitchem, J.: On n-coloring certain finite set systems. Ars Comb. 5, 207–212 (1978). MR 0505583 (58 #21667)

    Google Scholar 

  67. Mitchem, J., Schmidt, R.L.: On the Erdős-Faber-Lovász conjecture. Ars Comb. 97, 497–505 (2010). MR 2743755 (2011i:05195)

    Google Scholar 

  68. Motzkin, Th.: The lines and planes connecting the points of a finite set. Trans. Am. Math. Soc. 70, 451–464 (1951). MR 0041447 (12,849c)

    Google Scholar 

  69. Paul, V., Germina, K.A.: On edge coloring of hypergraphs and Erdös-Faber-Lovász conjecture. Discret. Math. Algorithms Appl. 4 (1), 1250003, 5 pp. (2012). MR 2913089

    Google Scholar 

  70. Peterson, D., Woodall, D.R.: Edge-choosability in line-perfect multigraphs. Discret. Math. 202 (1–3), 191–199 (1999). MR 1694489 (2000a:05086)

    Google Scholar 

  71. Peterson, D., Woodall, D.R.: Erratum: “Edge-choosability in line-perfect multigraphs” [Discret. Math. 202 (1–3), 191–199 (1999). MR1694489 (2000a:05086)]. Discret. Math. 260 (1–3), 323–326 (2003). MR 1948402 (2003m:05076)

    Google Scholar 

  72. Pólya, G.: How to Solve it. Princeton Science Library. Princeton University Press, Princeton (2004). A new aspect of mathematical method, Expanded version of the 1988 edition, with a new foreword by John H. Conway. MR 2183670 (2006f:00007)

    Google Scholar 

  73. Romero, D., Alonso-Pecina, F.: The Erdős-Faber-Lovász conjecture is true for n ≤ 12. Discret. Math. Algorithms Appl. 6 (3), 1450039, 5 pp. (2014). MR 3217845

    Google Scholar 

  74. Romero, D., Sánchez-Arroyo, A.: Adding evidence to the Erdős-Faber-Lovász conjecture. Ars Comb. 85, 71–84 (2007). MR 2359282 (2008m:05119)

    Google Scholar 

  75. Romero, D., Sánchez-Arroyo, A.: Advances on the Erdős-Faber-Lovász conjecture. In: Combinatorics, Complexity, and Chance. Oxford Lecture Series in Mathematics and its Applications, vol. 34, pp. 272–284. Oxford University Press, Oxford (2007). MR 2314574 (2008f:05128)

    Google Scholar 

  76. Sánchez-Arroyo, A.: The Erdős-Faber-Lovász conjecture for dense hypergraphs. Discret. Math. 308 (5–6), 991–992 (2008). MR 2378934 (2008m:05121)

    Google Scholar 

  77. Schauz, U.: Algebraically solvable problems: describing polynomials as equivalent to explicit solutions. Electron. J. Comb. 15 (1), Research Paper 10, 35 pp. (2008). MR 2368915 (2009c:41009)

    Google Scholar 

  78. Schauz, U.: Proof of the list edge coloring conjecture for complete graphs of prime degree. Electron. J. Comb. 21 (3), Paper 3.43, 17 pp. (2014). MR 3262280

    Google Scholar 

  79. Seymour, P.D.: Packing nearly disjoint sets. Combinatorica 2 (1), 91–97 (1982). MR 671149 (83m:05044)

    Google Scholar 

  80. Shannon, C.E.: A theorem on coloring the lines of a network. J. Math. Phys. 28, 148–151 (1949). MR 0030203 (10,728g)

    Google Scholar 

  81. Soifer, A.: The Colorado Mathematical Olympiad and Further Explorations. Springer, New York (2011)

    Book  MATH  Google Scholar 

  82. Tian, J., Zhang, X.: Pseudo-outerplanar graphs and chromatic conjectures. Ars Comb. 114, 353–361 (2014). MR 3203677

    Google Scholar 

  83. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz No. 3, 25–30 (1964). MR 0180505 (31 #4740)

    Google Scholar 

  84. Vizing, V.G.: Coloring the vertices of a graph in prescribed colors. Diskret. Analiz No. 29 Metody Diskret. Anal. v Teorii Kodov i Shem 101, 3–10 (1976). MR 0498216 (58 #16371)

    Google Scholar 

  85. Wang, W.: Edge choosability of planar graphs without short cycles. Sci. China Ser. A 48 (11), 1531–1544 (2005). MR 2203603 (2006m:05099)

    Google Scholar 

  86. Wang, G., Huang, Q.: The edge choosability of C n × C m . Graph Theory Notes N.Y. 49, 11–13 (2005). MR 2202294 (2006h:05086)

    Google Scholar 

  87. Wang, G., Huang, Q.: The edge choosability of C n × P m . Ars Comb. 83, 161–167 (2007). MR 2305755 (2008c:05073)

    Google Scholar 

  88. Wang, W.-F., Lih, K.-W.: On the sizes of graphs embeddable in surfaces of nonnegative Euler characteristic and their applications to edge choosability. Eur. J. Comb. 28 (1), 111–120 (2007). MR 2261807 (2007i:05072)

    Google Scholar 

  89. Weifan, W., Lih, K.-W.: Choosability, edge choosability, and total choosability of outerplane graphs. Eur. J. Comb. 22 (1), 71–78 (2001). MR 1808085 (2002g:05091)

    Google Scholar 

  90. Woodall, D.R.: Edge-choosability of multicircuits. Discret. Math. 202 (1–3), 271–277 (1999). MR 1694465 (2000a:05090)

    Google Scholar 

  91. Wu, J., Wang, P.: List-edge and list-total colorings of graphs embedded on hyperbolic surfaces. Discret. Math. 308 (24), 6210–6215 (2008). MR 2464909 (2009k:05087)

    Google Scholar 

  92. Zhang, X., Wu, J., Liu, G.: List edge and list total coloring of 1-planar graphs. Front. Math. China 7 (5), 1005–1018 (2012). MR 2965951

    Google Scholar 

Download references

Acknowledgements

Special thanks to the editors (Ralucca Gera, Stephen Hedetniemi, Craig Larson) for organizing the lectures, for making this volume happen, and for their patience and kindness with the deadlines. Extra thanks to the anonymous referee for the careful reading and a constructive report. Loving thanks to Jennifer Walworth for the editorial advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mark Kayll .

Editor information

Editors and Affiliations

Appendix: Notation and Terminology

Appendix: Notation and Terminology

Our purpose here is to fix the notation and terminology appearing in this chapter and not to provide an exhaustive definition list for related nomenclature. Omissions of a combinatorial or graph-theoretic nature may be found in [10], while linear programming omissions can be rectified using [20]. Sets We denote the sets of real and nonnegative real numbers by \(\mathbb{R}\) and \(\mathbb{R}^{+}\), respectively. If n is a positive integer, then [n] means the set {1, 2, , n}. If S is a set and k a nonnegative integer, then \(\binom{S}{k}\) denotes the set of all k-element subsets of S.

Hypergraphs and Graphs A hypergraph consists of a finite set V of vertices, together with a finite multiset \(\mathcal{H}\) of subsets of V; elements of \(\mathcal{H}\) are called edges. We follow a common practice and use \(\mathcal{H}\) to refer both to a hypergraph and its edge set. The order of a hypergraph is the cardinality of V and is usually denoted by n, while m is reserved for the size \(\vert \mathcal{H}\vert \) of \(\mathcal{H}\). Most hypergraphs here are simple, meaning they contain no singleton edges and any two distinct edges intersect in at most one vertex. The degree of a vertex is the number of edges containing it, and \(\Delta (\mathcal{H})\) denotes the maximum degree in \(\mathcal{H}\). A hypergraph is regular if every vertex has degree \(\Delta \) and in this event is called Δ-regular. (We generally omit the argument from a hypergraph invariant when there’s no danger of ambiguity.) A hypergraph \(\mathcal{H}\) is uniform if every edge \(A \in \mathcal{H}\) contains the same number r of vertices and in this event is called r-uniform. We call \(\mathcal{H}\) intersecting when \(A \cap B\neq \varnothing \) for every pair A, B of edges in \(\mathcal{H}\). One natural example of a hypergraph enjoying all of these last three properties is a projective plane \(\mathcal{P}\) of ‘order’ q (for an integer q ≥ 2). Of course, as a hypergraph, such a \(\mathcal{P}\) has order and size q 2 + q + 1 and is (q + 1)-regular and (q + 1)-uniform, and pairwise edge intersections are all singletons. A degenerate projective plane (sometimes called a ‘near pencil’ in the literature) is a hypergraph on the vertex set [n] with edge set {{1, n}, {2, n}, , {n − 1, n}, {1, 2, , n − 1}}.

A multigraph G = (V, E) is a 2-uniform hypergraph with vertex set V and edge set E; this definition, though not quite standard, conveniently disallows G to contain loops, which get in the way of careful definitions of both vertex and edge colouring. A simple graph is a multigraph that is simple in the hypergraph sense. We sometimes use the generic ‘graph’ when there is no reason to be specific regarding multigraph or simple graph. The maximum number of vertices in a clique of G is denoted by ω(G).

Colouring For a graph G = (V, E) and a positive integer k, a k-colouring of G is a function σ: V → [k] such that

$$\displaystyle{ \sigma (x)\neq \sigma (y)\ \text{ whenever }\ \{x,y\} \in E. }$$
(11.15)

Such functions are usually called ‘proper colourings’, but we never consider improper colourings and thus dispense with the adjective. The least k for which G admits a k-colouring is G’s chromatic number χ(G). A k-list assignment L is a function that assigns to each vertex x of G a k-set (or ‘list’) L x (of natural numbers, say). Given such an L, an L-colouring of G is a function \(\sigma: V \rightarrow \bigcup _{x\in V }L_{x}\) such that σ(x) ∈ L x for each x ∈ V and the usual colouring condition (11.15) is satisfied. The list-chromatic number \(\chi _{L}(G)\) is the least integer k for which G admits an L-colouring for every k-list assignment L. Because one such L has each L x  = [k], we always have \(\chi _{L} \geq \chi\).

Both of χ, \(\chi _{L}\) have edge and ‘total’ analogues. The chromatic index χ′(G) of G can be defined as the chromatic number of the line graph of G and likewise for the list-chromatic index \(\chi _{L}'(G)\). The total graph of G = (V, E) has vertex set VE and an edge joining every pair of its vertices corresponding to an incident or adjacent pair of objects (vertices or edges) in G. The total chromatic number χ″(G) is the chromatic number of the total graph of G, while the total list-chromatic number \(\chi ''_{L}(G)\) is defined analogously to \(\chi _{L}'(G)\). It’s an exercise to prove that these invariants always satisfy

$$\displaystyle{ (\Delta + 1 \leq )\,\,\chi '' \leq \chi ''_{L} \leq \chi _{L}' + 2\,\,(\leq 2\Delta + 1). }$$
(11.16)

When we consider χ′ for hypergraphs \(\mathcal{H}\), it’s useful to have in mind the connection with matchings. A matching in \(\mathcal{H}\) is a set of pairwise disjoint edges of \(\mathcal{H}\), and we write \(\mathcal{M}\) for the set of matchings of \(\mathcal{H}\). We denote by \(\nu (\mathcal{H})\) the maximum size of a matching in \(\mathcal{H}\), i.e., \(\max \{\vert M\vert: M \in \mathcal{M}\}\). Now \(\chi '(\mathcal{H})\) is the least size of a subset of \(\mathcal{M}\) whose union is \(\mathcal{H}\). This formulation may be cast in linear programming terms. First we define the fractional chromatic index \(\chi '^{{\ast}}(\mathcal{H})\) as the optimal value of the LP (in the nonnegative orthant of \(\mathbb{R}^{\mathcal{M}}\)):

$$\displaystyle{ \begin{array}{rrcll} \min & \sum _{M\in \mathcal{M}}x(M) \\ \text{subject to}&\sum _{A\in M\in \mathcal{M}}x(M)& \geq &1&\text{for each }\ A \in \mathcal{H}.\\ \end{array} }$$
(11.17)

Notice that any optimal solution \(x \in \mathbb{R}^{\mathcal{M}}\) to the LP (11.17), under the extra constraint that x have integer entries, must have {0, 1}-entries. Thus \(\chi '(\mathcal{H})\) is the optimal value of this integer LP, whose linear relaxation (11.17) defines \(\chi '^{{\ast}}(\mathcal{H})\). We also have one occasion to refer to the LP dual of problem (11.17) (in the nonnegative orthant of \(\mathbb{R}^{\mathcal{H}}\)):

$$\displaystyle{ \begin{array}{rrcll} \max & \sum _{A\in \mathcal{H}}w(A) \\ \text{subject to}&\sum _{A\in M}w(A)& \leq &1&\text{for each }\ M \in \mathcal{M}.\\ \end{array} }$$
(11.18)

In (11.8)—see Sect. 11.1.1—it would have been natural to write \(\chi _{L}'^{{\ast}}\) in place of χ, and indeed, we could have done so because these two invariants turn out to be the same; see, e.g., [55].

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kayll, P.M. (2016). Two Chromatic Conjectures: One for Vertices and One for Edges. In: Gera, R., Hedetniemi, S., Larson, C. (eds) Graph Theory. Problem Books in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-31940-7_11

Download citation

Publish with us

Policies and ethics