Skip to main content

Safety Performance Assessment of Assisted and Automated Driving in Traffic: Simulation as Knowledge Synthesis

  • Chapter
  • First Online:
Automated Driving

Abstract

Advanced driver assistance and automated driving can influence traffic safety in a variety of ways. The development and implementation of safety-relevant functions require prospective, quantitative assessment of their traffic safety impacts. Both benefits and risks can be quantified using simulation-based virtual experimental techniques. To this end, traffic phenomena are modeled taking into account key safety-relevant processes; “stochastic” simulation is performed on large, representative virtual samples. The virtual representations of traffic phenomena are based on detailed, stochastic models of drivers, vehicles, traffic flow, and the road environment, together with their interactions. The models incorporate knowledge from field operational test (FOT), naturalistic driving studies (NDS), laboratory and driving simulator experiments, and other sources. Simulation serves to synthesize this knowledge. Large-scale, comprehensive simulations could help in identifying and evaluating the relevant situations in which automated driving impacts traffic safety. One key objective is a standardized harmonized methodology, agreed upon by all stakeholders, for comprehensive assessment of the impact of new driver assistance or automated driving functions on traffic safety.

This chapter is largely based on: Klaus Kompaß et al.: Fahrerassistenz und Aktive Sicherheit. Wirksamkeit—Beherrschbarkeit—Absicherung. expert verlag, Renningen 2015

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    “Costs” in this context is used as collective term for unintended side effects, not necessarily in the monetary sense.

References

  1. M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas, Y. Pilat, F. Homm, W. Huber, N. Kaempchen, Experience, results and lessons learned from automated driving on Germany’s highways. IEEE Intell. Transport. Syst. Mag. 7(1), 42–57 (2015)

    Article  Google Scholar 

  2. M. Bahram, Z. Ghandeharioun, P. Zahn, M. Baur, W. Huber, F. Busch, Microscopic Traffic Simulation Based Evaluation of Highly Automated Driving on Highways, in 17th International IEEE Conference on Intelligent Transportation Systems - ITSC 2014, ed. by IEEE (IEEE, 2014)

    Google Scholar 

  3. R. Bernotat, Anthropotechnik in der Fahrzeugführung. Ergonomics 13(3), 353–377 (1970)

    Google Scholar 

  4. T. Connolly, L. Åberg, Some contagion models of speeding. Accident Anal. Prevent. 25(1), 57–66 (1993)

    Article  Google Scholar 

  5. R.J. Cook, D.L. Sackett, The number needed to treat: A clinically useful measure of treatment effect. Br. Med. J. 18, 452–454 (1995)

    Article  Google Scholar 

  6. C. Domsch, W. Huber, Integrale Sicherheit - ein ganzheitlicher Ansatz für die Fahrzeugsicherheit. 17 (Aachener Kolloquium Fahrzeug- und Motorentechnik, Aachen, 2008)

    Google Scholar 

  7. A. Eskandarian (ed.), Handbook of Intelligent Vehicles (Springer, Heidelberg, 2012)

    Google Scholar 

  8. F. Fahrenkrog, A. Zlocki, L. Eckstein, Bewertung Aktiver Sicherheit: Vom Test zur Wirksamkeitsanalyse. ATZ 1(116), 34–39 (2014)

    Google Scholar 

  9. I. Ferenczi, T. Helmer, P. Wimmer, R. Kates, Effectiveness Analysis and Virtual Design of Integrated Safety Systems Illustrated Using The Example Of Integrated Pedestrian And Occupant Protection, in 12th International Symposium and Exhibition on Sophisticated Car Occupant Safety Systems (Fraunhofer-Institut für Chemische Technologie ICT, 2014)

    Google Scholar 

  10. M. Green, “How long does it take to stop?” Methodological analysis of driver perception-brake times. Transport. Hum. Factors 2(3), 195–216 (2000)

    Article  Google Scholar 

  11. T. Helmer, Development of a Methodology for the Evaluation of Active Safety using the Example of Preventive Pedestrian Protection, Thesis (Springer, Heidelberg, 2015), ISBN 978-3-319-12888-7

    Google Scholar 

  12. T. Helmer, T. Kühbeck, C. Gruber, R. Kates. Development of an Integrated Test Bed and Virtual Laboratory for Safety Performance Prediction in Active Safety Systems (F2012-F05-005), in FISITA 2012 World Automotive Congress - Proceedings and Abstracts, 2012 (ISBN 978-7-5640-6987-2)

    Google Scholar 

  13. T. Helmer, M. Neubauer, S. Rauscher, C. Gruber, K. Kompass, R. Kates, Requirements and Methods to Ensure a Representative Analysis of Active Safety Systems, in 11th International Symposium and Exhibition on Sophisticated Car Occupant Safety Systems (Fraunhofer-Institut für Chemische Technologie ICT, Pfinztal, 2012), pp. 6.1–6.18, ISSN 0722-4087

    Google Scholar 

  14. T. Helmer, R.R. Samaha, P. Scullion, A. Ebner, R. Kates, Injury risk to specific body regions of pedestrians in frontal car crashes modeled by empirical, in-depth accident data, in Proceedings of the 54th Stapp Car Crash Conference, 2010

    Google Scholar 

  15. T. Helmer, R.R. Samaha, P. Scullion, A. Ebner, R. Kates. Kinematical, Physiological, and Vehicle-Related Influences on Pedestrian Injury Severity in Frontal Car Crashes: Multivariate Analysis and Cross-validation, in Proceedings of the International Research Council on Biomechanics of Injury (IRCOBI) (IRCOBI, Hannover, 2010), pp. 181–198

    Google Scholar 

  16. T. Helmer, P. Scullion, R.R. Samaha, A. Ebner, R. Kates, Predicting the injury severity of pedestrians in frontal vehicle crashes based on empirical, in-depth accident data. Int. J. Intell. Transport. Syst. Res. 9(3), 139–151 (2011)

    Google Scholar 

  17. W.E. Hick, On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952)

    Article  Google Scholar 

  18. W. Huber, J. Steinle, M. Marquardt, Der Fahrer steht im Mittelpunkt - Fahrerassistenz und Aktive Sicherheit bei der BMW Group, in 24. VDI/VW-Gemeinschaftstagung - Integrierte Sicherheit und Fahrerassistenzsysteme, vol. 2048 VDI-Berichte (VDI Verlag, Düsseldorf, 2008), pp. 123–137

    Google Scholar 

  19. C. Hydén, The Development of a Method for Traffic Safety Evaluation: The Swedish Traffic Conflicts Technique, Bulletin 70 (Department of Traffic Planning and Engineering, Lund University, Sweden, 1987)

    Google Scholar 

  20. R. Kates, O. Jung, T. Helmer, A. Ebner, C. Gruber, K. Kompass, Stochastic Simulation of Critical Traffic Situations for the Evaluation of Preventive Pedestrian Protection Systems (VDI-Tagung Erprobung und Simulation in der Fahrzeugentwicklung, Baden-Baden, 2010)

    Google Scholar 

  21. D.G. Kleinbaum, M. Klein, Logistic Regression. A Self Learning Text. Statistics for Biology and Health (Springer, Heidelberg, 2010)

    Google Scholar 

  22. K. Kompass, C. Gruber, C. Domsch, Der Beitrag von Fahrerassistenzsystemen zur Aktiven und Passiven Sicherheit - die Integrale Sicherheit als Antwort auf die wachsenden Anforderungen an die Fahrzeugsicherheit, in 4. Tagung Sicherheit durch Fahrerassistenz, 2010.

    Google Scholar 

  23. K. Kompass, T. Helmer, C. Blaschke, R. Kates, Ganzheitliche und integrale Fahrzeugsicherheit. ATZ - Automobiltechnische Zeitschrift 116, 10–15 (2014)

    Article  Google Scholar 

  24. K. Kompass, T. Helmer, L. Wang, R. Kates, Gesamthafte Bewertung der Sicherheitsveränderung durch FAS/HAF im Verkehrssystem: Der Beitrag von Simulation, in Fahrerassistenz und Aktive Sicherheit. Wirksamkeit – Beherrschbarkeit – Absicherung (expert Verlag, Renningen, 2015), pp. 45–66

    Google Scholar 

  25. K. Kompass, W. Huber, Integrale Sicherheit – Effektive Wertsteigerung in der Fahrzeugsicherheit (VDA, Technischer Kongress, Berlin, 2009)

    Google Scholar 

  26. K. Kompass, W. Huber, T. Helmer, Safety and Comfort Systems: Introduction and Overview, in Handbook of Intelligent Vehicles, ed. by A. Eskandarian (Springer, Heidelberg, 2012)

    Google Scholar 

  27. N. Lerner, Brake Perception–Reaction Times of Older and Younger Drivers, in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 37 (1993), pp. 206–210

    Google Scholar 

  28. P.L. Olson, M. Sivak, Perception-response time to unexpected roadway hazards. Hum. Factors 28, 91–96 (1986)

    Article  Google Scholar 

  29. Y. Page, F. Fahrenkrog, A. Fiorentino, J. Gwehenberger, T. Helmer, M. Lindman, O. op den Camp, L. van Rooji, S. Puch, M. Fränzle, U. Sander, P. Wimmer, A Comprehensive and Harmonized Method for Assessing the Effectiveness of Advanced Driver Assistance Systems by Virtual Simulation: The P.E.A.R.S. Initiative, in 24th International Technical Conference on the Enhanced Safety of Vehicles (ESV 2015), number 15-0370, 2015

    Google Scholar 

  30. H. Prantl, Error. Süddeutsche Zeitung 37, 13 (2015)

    Google Scholar 

  31. E. Schechtman, Odds ratio, relative risk, absolute risk reduction, and the number needed to treat – which of these should we use? Value Health 5(5), 431–436 (2002)

    Article  Google Scholar 

  32. C. Steinhoff, R. Kates, H. Keller, B. Färber, B. Färber, Problematik präventiver Schaltungen von Streckenbeeinflussungsanlagen (BMVBW Forschung Straßenbau 853, Bundesanstalt für Straßenwese, 2001)

    Google Scholar 

  33. A. Weitzel, H. Winner, C. Peng, S. Geyer, F. Lotz, L. Sefati, Absicherungsstrategien für Fahrerassistenzsysteme mit Umfeldwahrnehmung (BASt-Bericht F98, Bundesanstalt für Straßenwesen, 2014)

    Google Scholar 

  34. R. Wertheimer et al., Ko-PER – Fahrerassistenz und präventive Sicherheit mittels kooperativer Perzeption: Partnerübergreifender Schlussbericht, Schlussbericht (Bundesministerium für Wirtschaft und Technologie (BMWi), 2014)

    Google Scholar 

  35. P. Wimmer, A. Rieser, W. Sinz. A Simulation Method for Virtual Design and Evaluation of Integrated Safety Systems, in NAFEMS World Congress, 2013

    Google Scholar 

  36. H. Winner, S. Hakuli, G. Wolf (eds.), Handbuch Fahrerassistenzsysteme (Vieweg+Teubner Verlag/GWV Fachverlage GmbH, Wiesbaden, 2009)

    Google Scholar 

  37. R.M. Yerkes, J.D. Dodson, The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 18, 459–482 (1908)

    Article  Google Scholar 

  38. A. Zlocki, L. Eckstein, F. Fahrenkrog, Evaluation and sign-off methodology for automated vehicle systems based on relevant driving situations, in Transportation Research Board (TRB), 94th Annual Meeting, Washington DC, USA, 11–15 Jan 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Helmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Helmer, T., Kompaß, K., Wang, L., Kühbeck, T., Kates, R. (2017). Safety Performance Assessment of Assisted and Automated Driving in Traffic: Simulation as Knowledge Synthesis. In: Watzenig, D., Horn, M. (eds) Automated Driving. Springer, Cham. https://doi.org/10.1007/978-3-319-31895-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31895-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31893-6

  • Online ISBN: 978-3-319-31895-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics