Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 565))

Abstract

The key idea of the absolute nodal coordinate formulation (ANCF) is to use slope vectors in order to describe the orientation of the cross-section of structural mechanics components, such as beams, plates or shells. This formulation relaxes the kinematical assumptions of Bernoulli–Euler and Timoshenko beam theories and enables a deformation of the cross-sections. The present contribution shows how to create 2D and 3D structural finite elements based on the ANCF by employing different sets of slope vectors for approximating the cross-sections’ orientation. A specific aim of this chapter is to present a unified notation for structural mechanics and continuum mechanics ANC formulations. Particular focus is laid on enhanced formulations for such finite elements that circumvent severe issues like Poisson or shear locking. The performance of these elements is evaluated and a detailed assessment comprising the convergence order, the number of iterations, and Jacobian updates for large deformation benchmark problems is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an example of a slope vector, see \({\mathbf {x}}_{,\xi }\), \({\mathbf {x}}_{,\eta }\) or \({\mathbf {x}}_{,\zeta }\) in Fig. 2.

  2. 2.

    http://www.hotint.org/.

References

  • Antman, S. S. (1972). The theory of rods. In S. Flügge & C. Truesdell (Eds.), Handbuch der Physik (Vol. VIa/2, pp. 641–703). Berlin: Springer.

    Google Scholar 

  • Berzeri, M., & Shabana, A. A. (2002). Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. Journal of Sound and Vibration, 235(4), 539–565.

    Article  Google Scholar 

  • Betsch, P., & Steinmann, P. (2003). Constrained dynamics of geometrically exact beams. Computational Mechanics, 31, 49–59.

    Article  MATH  Google Scholar 

  • Dibold, M., Gerstmayr, J., & Irschik, H. (2009). A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. ASME Journal of Computational and Nonlinear Dynamics, 4(2), 10.

    Article  Google Scholar 

  • Dmitrochenko, O. N., & Pogorelov, D. Y. (2003). Generalization of plate finite elements for absolute nodal coordinate formulation. Multibody System Dynamics, 10, 17–43. http://dx.doi.org/10.1023/A:1024553708730. ISSN: 1384-5640.

  • Escalona, J. L., Hussien, H. A., & Shabana, A. A. (1998). Application of the absolute nodal co-ordinate formulation to multibody system dynamics. Journal of Sound and Vibration, 214(5), 833–851.

    Article  Google Scholar 

  • Frischkorn, J., & Reese, S. (2012). A novel solid-beam finite element for the simulation of nitinol stents. In Proceedings of the ECCOMAS 2012 European Congress on Computational Methods on Applied Sciences and Engineering, Vienna, Austria.

    Google Scholar 

  • Gerstmayr, J. (2009). A corotational approach for 3D absolute nodal coordinate elements. In Proceedings of the ASME IDETC/CIE 2009, San Diego, USA.

    Google Scholar 

  • Gerstmayr, J., & Irschik, H. (2003). Vibrations of the elasto-plastic pendulum. International Journal of Nonlinear Mechanics, 38, 111–122.

    Article  MATH  Google Scholar 

  • Gerstmayr, J., & Irschik, H. (2008). On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. Journal of Sound and Vibration, 318, 461–487.

    Article  Google Scholar 

  • Gerstmayr, J., & Matikainen, M. K. (2006). Analysis of stress and strain in the absolute nodal coordinate formulation. Mechanics Based Design of Structures and Machines, 34, 409–430.

    Article  Google Scholar 

  • Gerstmayr, J., & Shabana, A. A. (2006). Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dynamics, 45(1–2), 109–130.

    Article  MATH  Google Scholar 

  • Gerstmayr, J., Matikainen, M. K., & Mikkola, A. M. (2008). A geometrically exact beam element based on the absolute nodal coordinate formulation. Journal of Multibody System Dynamics, 20, 359–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Gerstmayr, J., Dorninger, A., Eder, R., Gruber, P., Reischl, D., Saxinger, M., Schörgenhumer, M., Humer, A., Nachbagauer, K., Pechstein, A., & Vetyukov, Y. (2013a). Hotint: A script language based framework for the simulation of multibody dynamics systems. In 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (Vol. 7B). doi:10.1115/DETC2013-12299.

  • Gerstmayr, J., Sugiyama, H., & Mikkola, A. (2013b). Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. ASME Journal of Computational and Nonlinear Dynamics, 8, 031016 (12 pages).

    Google Scholar 

  • Gruber, P. G., Nachbagauer, K., Vetyukov, Y., & Gerstmayr, J. (2013). A novel director-based Bernoulli-Euler beam finite element in absolute nodal coordinate formulation free of geometric singularities. Mechanical Sciences, 4(2), 279–289. doi:10.5194/ms-4-279-2013. http://www.mech-sci.net/4/279/2013/.

    Google Scholar 

  • Irschik, H., & Gerstmayr, J. (2009a). A hyperelastic Reissner-type model for non-linear shear deformable beams. In I. Troch & F. Breitenecker (Eds.), Proceedings of the Mathmod 09.

    Google Scholar 

  • Irschik, H., & Gerstmayr, J. (2009b). A continuum mechanics based derivation of Reissner’s large-displacement finite-strain beam theory: The case of plane deformations of originally straight Bernoulli-Euler beams. Acta Mechanica, 206, 1–21.

    Article  MATH  Google Scholar 

  • Irschik, H., & Gerstmayr, J. (2011). A continuum-mechanics interpretation of Reissner’s non-linear shear-deformable beam theory. Mathematical and Computer Modelling of Dynamical Systems, 17(1), 19–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, P., & Shabana, A. (2010a). Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dynamics, 61(1–2), 193–206.

    Article  MathSciNet  MATH  Google Scholar 

  • Lan, P., & Shabana, A. (2010b). Rational finite elements and flexible body dynamics. ASME Journal of Vibration and Acoustics, 132(4), 041007.

    Article  Google Scholar 

  • Matikainen, M. K., von Hertzen, R., Mikkola, A., & Gerstmayr, J. (2009). Elimination of high frequencies in the absolute nodal coordinate formulation. In Proceedings of the Institution of Mechanical Engineers, Part K, Journal of Multi-body Dynamics.

    Google Scholar 

  • Mikkola, A. M., & Shabana, A. A. (2003). A non-incremental finite element procedure for the analysis of large deformations of plates and shells in mechanical system applications. Multibody System Dynamics, 9, 283–309.

    Article  MathSciNet  MATH  Google Scholar 

  • Mikkola, A. M., Garcia-Vallejo, D., & Escalona, J. L. (2007). A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dynamics, 50, 249–264.

    Article  MATH  Google Scholar 

  • Nachbagauer, K., Pechstein, A. S., Irschik, H., & Gerstmayr, J. (2011). A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody System Dynamics, 26, 245–263.

    Article  MATH  Google Scholar 

  • Nachbagauer, K., Gruber, P., & Gerstmayr, J. (2013). Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: Application to static and linearized dynamic examples. Journal of Computational and Nonlinear Dynamics, 8, 021004.

    Article  Google Scholar 

  • Olshevskiy, A., Dmitrochenko, O., & Kim, C.-W. (2013). Three-dimensional solid brick element using slopes in the absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics, 9(2), 021001.

    Article  Google Scholar 

  • Omar, M. A., & Shabana, A. A. (2001). A two-dimensional shear deformable beam for large rotation and deformation problems. Journal of Sound and Vibration, 243(3), 565–576.

    Article  Google Scholar 

  • Pechstein, A., & Gerstmayr, J. (2013). A Lagrange-Eulerian formulation of an axially moving beam based on the absolute nodal coordinate formulation. Multibody System Dynamics, 30(3), 343–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Reissner, E. (1972). On one-dimensional finite-strain beam theory: The plane problem. Journal of Applied Mathematics and Physics, 23, 795–804.

    Article  MATH  Google Scholar 

  • Reissner, E. (1973). On one-dimensional large-displacement finite-strain beam theory. Studies in Applied Mathematics, LI, I(2), 87–95.

    Article  MATH  Google Scholar 

  • Shabana, A. A., & Schwertassek, R. (1997). Equivalance of the floating frame of reference approach and finite element formulations. International Journal of Non-Linear Mechanics, 33(3), 417–432.

    Article  MATH  Google Scholar 

  • Simo, J. C. (1985). A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 49, 55–70.

    Article  MATH  Google Scholar 

  • Simo, J. C., & Vu-Quoc, L. (1986a). On the dynamics of flexible beams under large overall motions–the plane case: Part I. Journal of Applied Mechanics, 53(4), 849–854. doi:10.1115/1.3171870. http://dx.doi.org/10.1115/1.3171870. ISSN: 0021-8936.

    Google Scholar 

  • Simo, J. C., & Vu-Quoc, L. (1986b). On the dynamics of flexible beams under large overall motions–the plane case: Part II. Journal of Applied Mechanics, 53(4), 855–863. doi:10.1115/1.3171871. http://dx.doi.org/10.1115/1.3171871. ISSN: 0021-8936.

    Google Scholar 

  • Simo, J. C., & Vu-Quoc, L. (1986c). A three-dimensional finite-strain rod model. Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering, 58, 79–116.

    Article  MATH  Google Scholar 

  • Simo, J. C., & Vu-Quoc, L. (1988). On the dynamics in space of rods undergoing large motions-a geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 66, 125–161.

    Article  MathSciNet  MATH  Google Scholar 

  • Sugiyama, H., & Shabana, A. A. (2004). Application of plasticity theory and absolute nodal coordinate formulation to flexible multibody system dynamics. ASME Journal of Mechanical Design, 126, 478–487.

    Article  Google Scholar 

  • Sugiyama, H., Escalona, J. L., & Shabana, A. A. (2003). Formulation of three-dimensional joint constraints using the absolute nodal coordinates. Nonlinear Dynamics, 31, 167–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Yakoub, R. Y., & Shabana, A. A. (2001). Three dimensional absolute nodal coordinate formulation for beam elements. ASME Journal of Mechanical Design, 123, 606–621.

    Article  Google Scholar 

Download references

Acknowledgments

The authors Gerstmayr, Humer, and Gruber have been supported by the Linz Center of Mechatronics (LCM) in the framework of the Austrian Comet-K2 programme. K. Nachbagauer acknowledges support from the Austrian Science Fund (FWF): T733-N30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Gerstmayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Gerstmayr, J., Humer, A., Gruber, P., Nachbagauer, K. (2016). The Absolute Nodal Coordinate Formulation. In: Betsch, P. (eds) Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics. CISM International Centre for Mechanical Sciences, vol 565. Springer, Cham. https://doi.org/10.1007/978-3-319-31879-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31879-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31877-6

  • Online ISBN: 978-3-319-31879-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics