Skip to main content

On Zero Knowledge Argument with PQT Soundness

  • Conference paper
Information Security Applications (WISA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9503))

Included in the following conference series:

  • 1227 Accesses

Abstract

Loosely speaking, an interactive argument is said to be zero knowledge if the view of every “efficient” verifier can be “efficiently” simulated. Recently, Pass relaxed the “efficient” adversaries and the simulator to be probabilistic quasi-polynomial time (\(\mathcal {PQT}\))) machines and proposed such a relaxed zero knowledge argument with computational soundness. In this paper, we present a relaxed zero knowledge protocol which achieves \(\mathcal {PQT}\) soundness, instead of computational soundness. Also, it can be regarded as a stand-alone version of PMV scheme, with the difference that it is 5-round while PMV scheme is 6-round in the stand-alone setting. In addition, the simulation way determines that it is secure against \(\mathcal {PPT}\) resettable-soundness attackers.

Supported by NSFC under grant No. 61003276 and the Strategic Priority Program of Chinese Academy of Sciences (Grant No. XDA06010702).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barak, B., Goldreich, O., Goldwasser, S., Lindell, Y.: Resettably sound zero knowledge and its applications. In: Proceedings FOCS 2001, pp. 116–125 (2001)

    Google Scholar 

  2. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero- knowledge requires (almost) logarithm many rounds. SIAM J. Comput. 32(1), 1–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero knowledge. In: Proceedings STOC 2000, pp. 235–244 (2000)

    Google Scholar 

  4. Damgård, I.: On Sigma Protocols. http://www.daimi.au.dk/~ivan/CPT.html

  5. Deng, Y., Goyal, V., Sahai, A.: Resolving the simultaneous resettability conjecture and a new non-black-box simulation strategy. In: Proceedings FOCS 2009, pp. 251–260 (2009)

    Google Scholar 

  6. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proceedins STOC 1998, pp. 409–418 (1998)

    Google Scholar 

  7. Fouard, L., Duclos, M., Lafourcade, P.: Survey on electronic voting schemes. http://www-verimag.imag.fr/~duclos/paper/e-vote.pdf

  8. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  10. Feige, U., Shamir, A.: Witness indinstinguishable and witness hiding protocols. In: Proceedins STOC 1990, pp. 416–426 (1990)

    Google Scholar 

  11. Secure Multi-Party Computation. http://www.wisdom.weizmann.ac.il

  12. Goldreich, O.: Foundation of Cryptography-Basic Tools. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  13. Goldwasser, O., Micali, A., Rackoff, C.: The knowledge complexity of interactive proof system. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldreich, O., Micali, S., Widerson, A.: Proofs that yields nothing but their validity or all languages in \(\cal {NP}\) have zero knowledge proof systems. J. ACM 38(3), 691–729 (1991)

    Article  MATH  Google Scholar 

  15. Micali, S., Reyzin, L.: Soundness in the public-key model. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 542–565. springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Lindell, Y.: General composition and universal composability in secure multi- party computation. In: proceedins FOCS 2003, pp. 394–403 (2003)

    Google Scholar 

  17. Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  18. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) Advances in Cryptology – EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Pass, R., Venkitasubramaniam, M.: On constant-round concurrent zero-knowledge. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 553–570. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank anonymous referees for the helpful suggestions to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, G., Li, H. (2016). On Zero Knowledge Argument with PQT Soundness. In: Kim, Hw., Choi, D. (eds) Information Security Applications. WISA 2015. Lecture Notes in Computer Science(), vol 9503. Springer, Cham. https://doi.org/10.1007/978-3-319-31875-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31875-2_27

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31874-5

  • Online ISBN: 978-3-319-31875-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics