Skip to main content

Vascular Proteomics

  • Chapter
  • First Online:
Manual of Cardiovascular Proteomics

Abstract

Atherothrombosis remains one of the main causes of morbidity and mortality in the western countries. The evolution from the initial steps to clinical events in atherothrombosis is a continuum of integrated and increasingly complex biological processes. To understand a process of such complexity, there is a need of developing new techniques, which could help to identify novel mediators of atherothrombosis that could become potential diagnostic, prognostic and/or therapeutic targets. In this chapter, we have described vascular samples including cells, tissues and blood (circulating cells, lipoproteins and extracellular vesicles) used in proteomic studies, as well as potential challenges and limitations. Following this, we made a succinct description of proteomics technologies (gel-based and MS-based approaches) applied to vascular samples and we included some examples to highlight what proteomics have added to previous techniques and/or concepts. On the whole, proteomics, in combination with other complementary approaches, is emerging as a very powerful tool that is expected to improve the diagnosis and treatment of patients at high risk of suffering a cardiovascular event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852–66.

    Article  CAS  PubMed  Google Scholar 

  2. Michel JB, Martin-Ventura JL, Egido J, Sakalihasan N, Treska V, Lindholt J, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc Res. 2011;90:18–27.

    Article  CAS  PubMed  Google Scholar 

  3. Swirski FK, Nahrendorf M. Imaging macrophage development and fate in atherosclerosis and myocardial infarction. Immunol Cell Biol. 2013;91:297–303.

    Article  CAS  PubMed  Google Scholar 

  4. Tuñón J, Martín-Ventura JL, Blanco-Colio LM, Lorenzo O, López JA, Egido J. Proteomic strategies in the search of new biomarkers in atherothrombosis. J Am Coll Cardiol. 2010;55:2009–16.

    Article  PubMed  Google Scholar 

  5. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB. Elastase-induced experimental aneurysms in rats. Circulation. 1990;82:973–81.

    Article  CAS  PubMed  Google Scholar 

  6. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL, Blanco-Colio L, Lavin B, Mallavia B, et al. Animal models of cardiovascular diseases. J Biomed Biotechnol. 2011;2011:497841.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Didangelos A, Yin X, Mandal K, Baumert M, Jahangiri M, Mayr M. Proteomics characterization of extracellular space components in the human aorta. Mol Cell Proteomics. 2010;9:2048–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q, et al. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics. 2011;10:M111.008128.

    Article  PubMed  PubMed Central  Google Scholar 

  9. de la Cuesta F, Alvarez-Llamas G, Maroto AS, Donado A, Zubiri I, Posada M, et al. A proteomic focus on the alterations occurring at the human atherosclerotic coronary intima. Mol Cell Proteomics. 2011;10:M110.003517.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boytard L, Spear R, Chinetti-Gbaguidi G, Acosta-Martin AE, Vanhoutte J, Lamblin N, et al. Role of proinflammatory CD68(+) mannose receptor(−) macrophages in peroxiredoxin-1 expression and in abdominal aortic aneurysms in humans. Arterioscler Thromb Vasc Biol. 2013;33:431–8.

    Article  CAS  PubMed  Google Scholar 

  11. Moreno JA, Ortega-Gómez A, Delbosc S, Beaufort N, Sorbets E, Louedec L, et al. In vitro and in vivo evidence for the role of elastase shedding of CD163 in human atherothrombosis. Eur Heart J. 2012;33:252–63.

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C, et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2013;33:2013–20.

    Article  CAS  PubMed  Google Scholar 

  13. Fu Z, Yan K, Rosenberg A, Jin Z, Crain B, Athas G, et al. Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas. Proteomics Clin Appl. 2013;7:217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blanco-Colio LM, Martín-Ventura JL, Muñóz-García B, Orbe J, Páramo JA, Michel JB, et al. Identification of soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) as a possible biomarker of subclinical atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:916–22.

    Article  CAS  PubMed  Google Scholar 

  15. Dominguez-Rodriguez A, Abreu-Gonzalez P, Kaski JC. Inflammatory systemic biomarkers in setting acute coronary syndromes – effects of the diurnal variation. Curr Drug Targets. 2009;10:1001–8.

    Article  CAS  PubMed  Google Scholar 

  16. Fontaine V, Jacob MP, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol. 2002;161:1701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shuford CM, Hawkridge AM, Burnett JC, Muddiman DC. Utilizing spectral counting to quantitatively characterize tandem removal of abundant proteins (TRAP) in human plasma. Anal Chem. 2010;82:10179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tan SH, Mohamedali A, Kapur A, Baker MS. Ultradepletion of human plasma using chicken antibodies: a proof of concept study. J Proteome Res. 2013;12:2399–413.

    Article  CAS  PubMed  Google Scholar 

  19. Martin-Ventura JL, Madrigal-Matute J, Martinez-Pinna R, Ramos-Mozo P, Blanco-Colio LM, Moreno JA, et al. Erythrocytes, leukocytes and platelets as a source of oxidative stress in chronic vascular diseases: detoxifying mechanisms and potential therapeutic options. Thromb Haemost. 2012;108:435–42.

    Article  CAS  PubMed  Google Scholar 

  20. Barasa B, Slijper M. Challenges for red blood cell biomarker discovery through proteomics. Biochim Biophys Acta. 1844;2014:1003–10.

    Google Scholar 

  21. Burkhart JM, Gambaryan S, Watson SP, Jurk K, Walter U, Sickmann A, et al. What can proteomics tell us about platelets? Circ Res. 2014;114:1204–19.

    Article  CAS  PubMed  Google Scholar 

  22. Pasini EM, Lutz HU, Mann M, Thomas AW. Red blood cell (RBC) membrane proteomics – part II: comparative proteomics and RBC patho-physiology. J Proteomics. 2010;73:421–35.

    Article  CAS  PubMed  Google Scholar 

  23. Asztalos BF, Schaefer EJ. High-density lipoprotein subpopulations in pathologic conditions. Am J Cardiol. 2003;91:12E–7.

    Article  CAS  PubMed  Google Scholar 

  24. Gordon SM, Deng J, Tomann AB, Shah AS, Lu LJ, Davidson WS. Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies. Mol Cell Proteomics. 2013;12:3123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Loyer X, Vion AC, Tedgui A, Boulanger CM. Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res. 2014;114:345–53.

    Article  CAS  PubMed  Google Scholar 

  26. Palmisano G, Jensen SS, Le Bihan MC, Lainé J, McGuire JN, Pociot F, et al. Characterization of membrane-shed microvesicles from cytokine-stimulated β-cells using proteomics strategies. Mol Cell Proteomics. 2012;11:230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McGregor E, Dunn MJ. Proteomics of heart disease. Hum Mol Genet. 2003;12 Spec No 2:R135–44.

    Article  PubMed  Google Scholar 

  28. Görg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics. 2004;4:3665–85.

    Article  PubMed  Google Scholar 

  29. Unlü M, Morgan M, Minden J. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis. 1997;18:2071–7.

    Article  PubMed  Google Scholar 

  30. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics. 2003;3:36–44.

    Article  CAS  PubMed  Google Scholar 

  31. Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, et al. A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis. 2009;203:112–8.

    Article  CAS  PubMed  Google Scholar 

  32. Martinez-Pinna R, Ramos-Mozo P, Madrigal-Matute J, Blanco-Colio LM, Lopez JA, Calvo E, et al. Identification of peroxiredoxin-1 as a novel biomarker of abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2011;31:935–43.

    Article  CAS  PubMed  Google Scholar 

  33. Lepedda AJ, Nieddu G, Zinellu E, De Muro P, Piredda F, Guarino A, et al. Proteomic analysis of plasma-purified VLDL, LDL, and HDL fractions from atherosclerotic patients undergoing carotid endarterectomy: identification of serum amyloid A as a potential marker. Oxid Med Cell Longev. 2013;2013:385214.

    PubMed  PubMed Central  Google Scholar 

  34. Michel JB, Virmani R, Arbustini E, Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur Heart J. 2011;32:1977–85, 85a, 85b, 85c.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hellings WE, Peeters W, Moll FL, Piers SR, van Setten J, Van der Spek PJ, et al. Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation. 2010;121:1941–50.

    Article  PubMed  Google Scholar 

  36. De Das S, Krishna S, Jethwa A. Iron status and its association with coronary heart disease: systematic review and meta-analysis of prospective studies. Atherosclerosis. 2015;238:296–303.

    Article  Google Scholar 

  37. Hanash SM. Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: current status. Electrophoresis. 2000;21:1202–9.

    Article  CAS  PubMed  Google Scholar 

  38. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol. 1999;17:676–82.

    Article  CAS  PubMed  Google Scholar 

  39. Stegemann C, Didangelos A, Barallobre-Barreiro J, Langley SR, Mandal K, Jahangiri M, et al. Proteomic identification of matrix metalloproteinase substrates in the human vasculature. Circ Cardiovasc Genet. 2013;6:106–17.

    Article  CAS  PubMed  Google Scholar 

  40. Kaga E, Karademir B, Baykal AT, Ozer NK. Identification of differentially expressed proteins in atherosclerotic aorta and effect of vitamin E. J Proteomics. 2013;92:260–73.

    Article  CAS  PubMed  Google Scholar 

  41. Dinardo CL, Venturini G, Zhou EH, Watanabe IS, Campos LC, Dariolli R, et al. Variation of mechanical properties and quantitative proteomics of VSMC along the arterial tree. Am J Physiol Heart Circ Physiol. 2014;306:H505–16.

    Article  CAS  PubMed  Google Scholar 

  42. Delporte C, Noyon C, Raynal P, Dufour D, Nève J, Abts F, et al. Advancement in stationary phase for peptide separation helps in protein identification: application to atheroma plaque proteomics using nano-chip liquid chromatography and mass spectrometry. J Chromatogr A. 2015;1385:116–23.

    Article  CAS  PubMed  Google Scholar 

  43. Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases. Vascul Pharmacol. 2012;56:232–44.

    Article  CAS  PubMed  Google Scholar 

  44. Smith LE, White MY. The role of post-translational modifications in acute and chronic cardiovascular disease. Proteomics Clin Appl. 2014;8:506–21.

    Article  CAS  PubMed  Google Scholar 

  45. Agnetti G, Husberg C, Van Eyk JE. Divide and conquer: the application of organelle proteomics to heart failure. Circ Res. 2011;108:512–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol. 1999;17:994–9.

    Article  CAS  PubMed  Google Scholar 

  47. von Haller PD, Yi E, Donohoe S, Vaughn K, Keller A, Nesvizhskii AI, et al. The application of new software tools to quantitative protein profiling via isotope-coded affinity tag (ICAT) and tandem mass spectrometry: II. Evaluation of tandem mass spectrometry methodologies for large-scale protein analysis, and the application of statistical tools for data analysis and interpretation. Mol Cell Proteomics. 2003;2:428–42.

    Google Scholar 

  48. Martinez-Acedo P, Núñez E, Gómez FJS, Moreno M, Ramos E, Izquierdo-Álvarez A, et al. A novel strategy for global analysis of the dynamic thiol redox proteome. Mol Cell Proteomics. 2012;11:800–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bonzon-Kulichenko E, Perez-Hernandez D, Nunez E, Martinez-Acedo P, Navarro P, Trevisan-Herraz M, et al. A robust method for quantitative high-throughput analysis of proteomes by 18O labeling. Mol Cell Proteomics. 2010;10:M110.003335–M110.

    Article  PubMed  Google Scholar 

  50. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics. 2004;3:1154–69.

    Article  CAS  PubMed  Google Scholar 

  51. Ow SY, Cardona T, Taton A, Magnuson A, Lindblad P, Stensjo K, et al. Quantitative shotgun proteomics of enriched heterocysts from Nostoc sp. PCC 7120 using 8-plex isobaric peptide tags. J Proteome Res. 2008;7:1615–28.

    Article  CAS  PubMed  Google Scholar 

  52. Viner RI, Zhang T, Second T, Zabrouskov V. Quantification of post-translationally modified peptides of bovine alpha-crystallin using tandem mass tags and electron transfer dissociation. J Proteomics. 2009;72:874–85.

    Article  CAS  PubMed  Google Scholar 

  53. Prentice RL, Paczesny S, Aragaki A, Amon LM, Chen L, Pitteri SJ, et al. Novel proteins associated with risk for coronary heart disease or stroke among postmenopausal women identified by in-depth plasma proteome profiling. Genome Med. 2010;2:48.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yin X, Subramanian S, Hwang SJ, O’Donnell CJ, Fox CS, Courchesne P, et al. Protein biomarkers of new-onset cardiovascular disease: prospective study from the systems approach to biomarker research in cardiovascular disease initiative. Arterioscler Thromb Vasc Biol. 2014;34:939–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jorge I, Burillo E, Mesa R, Baila-Rueda L, Moreno M, Trevisan-Herraz M, et al. The human HDL proteome displays high inter-individual variability and is altered dynamically in response to angioplasty-induced atheroma plaque rupture. J Proteomics. 2014;106:61–73.

    Article  CAS  PubMed  Google Scholar 

  56. Moxon JV, Liu D, Moran CS, Crossman DJ, Krishna SM, Yonglitthipagon P, et al. Proteomic and genomic analyses suggest the association of apolipoprotein C1 with abdominal aortic aneurysm. Proteomics Clin Appl. 2014;8:762–72.

    Article  CAS  PubMed  Google Scholar 

  57. Burillo E, Lindholt JS, Molina-Sanchez P, Jorge I, Martinez-Pinna R, Blanco-Colio LM, et al. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb Haemost. 2015;113:1335–46.

    Article  PubMed  Google Scholar 

  58. Keshishian H, Burgess MW, Gillette MA, Mertins P, Clauser KR, Mani DR, et al. Multiplexed, quantitative workflow for sensitive biomarker discovery in plasma yields novel candidates for early myocardial injury. Mol Cell Proteomics. 2015;14:2375–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Park SK, Venable JD, Xu T, Yates JR. A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods. 2008;5:319–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Searle BC. Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies. Proteomics. 2010;10:1265–9.

    Article  CAS  PubMed  Google Scholar 

  61. Heinecke NL, Pratt BS, Vaisar T, Becker L. PepC: proteomics software for identifying differentially expressed proteins based on spectral counting. Bioinformatics. 2010;26:1574–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mueller LN, Rinner O, Schmidt A, Letarte S, Bodenmiller B, Brusniak MY, et al. SuperHirn – a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics. 2007;7:3470–80.

    Article  CAS  PubMed  Google Scholar 

  63. Bouyssié D, Gonzalez de Peredo A, Mouton E, Albigot R, Roussel L, Ortega N, et al. Mascot file parsing and quantification (MFPaQ), a new software to parse, validate, and quantify proteomics data generated by ICAT and SILAC mass spectrometric analyses: application to the proteomics study of membrane proteins from primary human endothelial cells. Mol Cell Proteomics. 2007;6:1621–37.

    Article  PubMed  Google Scholar 

  64. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26:1367–72.

    Article  CAS  PubMed  Google Scholar 

  65. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13:2513–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goeminne LJ, Argentini A, Martens L, Clement L. Summarization vs peptide-based models in label-free quantitative proteomics: performance, pitfalls, and data analysis guidelines. J Proteome Res. 2015;14:2457–65.

    Article  CAS  PubMed  Google Scholar 

  67. Bleijerveld OB, Wijten P, Cappadona S, McClellan EA, Polat AN, Raijmakers R, et al. Deep proteome profiling of circulating granulocytes reveals bactericidal/permeability-increasing protein as a biomarker for severe atherosclerotic coronary stenosis. J Proteome Res. 2012;11:5235–44.

    Article  CAS  PubMed  Google Scholar 

  68. Rocchiccioli S, Pelosi G, Rosini S, Marconi M, Viglione F, Citti L, et al. Secreted proteins from carotid endarterectomy: an untargeted approach to disclose molecular clues of plaque progression. J Transl Med. 2013;11:260.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Kessler T, Zhang L, Liu Z, Yin X, Huang Y, Wang Y, et al. ADAMTS-7 inhibits re-endothelialization of injured arteries and promotes vascular remodeling through cleavage of thrombospondin-1. Circulation. 2015;131:1191–201.

    Article  CAS  PubMed  Google Scholar 

  70. Blanco-Colio LM, López JA, Martínez-Pinna Albar R, Egido J, Martín-Ventura JL. Vascular proteomics, a translational approach: from traditional to novel proteomic techniques. Expert Rev Proteomics. 2009;6:461–4.

    Article  CAS  PubMed  Google Scholar 

  71. Pernemalm M, Lehtiö J. Mass spectrometry-based plasma proteomics: state of the art and future outlook. Expert Rev Proteomics. 2014;11:431–48.

    Article  CAS  PubMed  Google Scholar 

  72. Tölle M, Huang T, Schuchardt M, Jankowski V, Prüfer N, Jankowski J, et al. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc Res. 2012;94:154–62.

    Article  PubMed  Google Scholar 

  73. Yassine HN, Jackson AM, Reaven PD, Nedelkov D, Nelson RW, Lau SS, et al. The application of multiple reaction monitoring to assess Apo A-I methionine oxidations in diabetes and cardiovascular disease. J Transl Proteomics. 2014;4–5:18–24.

    Article  Google Scholar 

  74. Martinez-Pinna R, Lindholt JS, Madrigal-Matute J, Blanco-Colio LM, Esteban-Salan M, Torres-Fonseca MM, et al. From tissue iron retention to low systemic haemoglobin levels, new pathophysiological biomarkers of human abdominal aortic aneurysm. Thromb Haemost. 2014;112:87–95.

    Article  CAS  PubMed  Google Scholar 

  75. Huang Y, Di Donato JA, Levison BS, Schmitt D, Li L, Wu Y, et al. An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med. 2014;20:193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Theurl I, Theurl M, Seifert M, Mair S, Nairz M, Rumpold H, et al. Autocrine formation of hepcidin induces iron retention in human monocytes. Blood. 2008;111:2392–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Luis Martin-Ventura PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martin-Ventura, J.L. et al. (2016). Vascular Proteomics. In: Agnetti, G., Lindsey, M., Foster, D. (eds) Manual of Cardiovascular Proteomics. Springer, Cham. https://doi.org/10.1007/978-3-319-31828-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31828-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31826-4

  • Online ISBN: 978-3-319-31828-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics