Skip to main content

Piezoelectricity and Electrostriction

  • Living reference work entry
  • First Online:
Electromechanically Active Polymers

Part of the book series: Polymers and Polymeric Composites: A Reference Series ((POPOC))

Abstract

In this chapter, fundamental aspects of piezoelectricity and electrostriction in dielectric materials and especially in polymers will be outlined. In order to make the introduction into the subject easier to access, basic and schematic ways of describing the complex matter have been chosen instead of an elaborate or comprehensive theoretical approach. For more detailed and more precise information, the interested reader is referred to the large volume of available original and review literature and to other relevant chapters of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Altafim RAP, Qiu X, Wirges W, Gerhard R, Altafim RAC, Basso HC, Jenninger W, Wagner J (2009) Template-based fluoroethylenepropylene piezoelectrets with tubular channels for transducer applications. J Appl Phys 106:014106

    Article  Google Scholar 

  • Anderson RA (1986) Mechanical stress in a dielectric solid from a uniform electric field. Phys Rev B 33:1302–1306

    Article  Google Scholar 

  • Andrienko D (2006) Introduction to liquid crystals. Max-Planck Institute of Polymer Research, International Max-Planck Research School “Modelling of Soft Matter” http://www.mpip-mainz.mpg.de/%7Eandrienk/lectures/IMPRS/liquid_crystals.pdf. Cited 19 Dec 2015

  • Baskaran S, He X, Chen Q, Fu JY (2011) Experimental studies on the direct flexoelectric effect in α-phase polyvinylidene fluoride films. Appl Phys Lett 98:242901

    Article  Google Scholar 

  • Baskaran S, He X, Wang Y, Fu JY (2012) Strain-gradient-induced electric polarization in α-phase polyvinylidene fluoride films. J Appl Phys 111:014109

    Article  Google Scholar 

  • Bauer S, Gerhard(-Multhaupt) R, Sessler GM (2004) Ferroelectrets: soft electroactive foams for transducers. Phys Today 57(2):37–42

    Article  Google Scholar 

  • Bauer S, Bauer-Gogonea S, Ploss B, Ploss B (2005) Nonlinear dielectric response of poled amorphous polymer dipole glasses. J Non-Cryst Sol 351:2759–2763

    Article  Google Scholar 

  • Bauer-Gogonea S, Bauer S, Gerhard(-Multhaupt) R (1999) Monomorphs, bimorphs, and multimorphs from polar polymer electrets. Braz J Phys 29:306–317

    Article  Google Scholar 

  • Broadhurst MG, Davis GT (1984) Physical basis for piezoelectricity in PVDF. Ferroelectrics 60:3–13

    Article  Google Scholar 

  • Buka A, Éber N (2013) Flexoelectricity in liquid crystals – theory, experiments and applications. Imperial College Press, London

    Google Scholar 

  • Carpi F, De Rossi D, Kornbluh R, Pelrine R, Sommer-Larsen P (2008) Dielectric elastomers as electromechanical transducers: fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, Oxford/Amsterdam

    Google Scholar 

  • Chee CYK, Tong L, Steven GP (1998) A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J Intell Mater Syst Struct 9:3–19

    Article  Google Scholar 

  • Chopra I (2002) Review of state of art of smart structures and integrated systems. AIAA J 40:2145–2187

    Article  Google Scholar 

  • Chu B, Salem DR (2012) Flexoelectricity in several thermoplastic and thermosetting polymers. Appl Phys Lett 101:103905

    Article  Google Scholar 

  • Curie J, Curie P (1880) Développement par compression de l’électricité polaire dans les cristaux hémiédres à faces inclinées (Development of polar electricity through compression in hemihedral crystals at inclined faces). Bull Soc Minéral Fr 3:90–93

    Google Scholar 

  • Drude P, Nernst W (1894) Über Elektrostriktion durch freie Ionen (About electrostriction via free ions). Z Phys Chem Leipzig 15:79–85

    Google Scholar 

  • Frübing P, Kremmer A, Gerhard(-Multhaupt) R, Spanoudaki A, Pissis P (2006) Relaxation processes at the glass transition in polyamide 11: from rigidity to viscoelasticity. J Chem Phys 125:214701

    Article  Google Scholar 

  • Fuda Y, Yoshida T (1994) Piezoelectric torsional actuator. Ferroelectrics 160:323–330

    Article  Google Scholar 

  • Fukada E (2000) History and recent progress in piezoelectric polymers. IEEE Trans Ultrason Ferroelectr Freq Contr 47:1277–1290

    Article  Google Scholar 

  • Fukada E, Sessler GM, West JE, Berraissoul A, Günther P (1987) Bending piezoelectricity in monomorph polymer films. J Appl Phys 62:3643–3646

    Article  Google Scholar 

  • Furukawa T, Seo N (1990) Electrostriction as the origin of piezoelectricity in ferroelectric polymers. Jpn J Appl Phys 29:675–680

    Article  Google Scholar 

  • Furukawa T, Nakajima K, Koizumi T, Date M (1987) Measurements of nonlinear dielectricity in ferroelectric polymers. Jpn J Appl Phys 26:1039–1045

    Article  Google Scholar 

  • Gerhard R (2014) A matter of attraction: electric charges localised on dielectric polymers enable electromechanical transduction. In: Annual Report, IEEE Conference on Electrical Insulation and Dielectric Phenomena. IEEE, New York, pp 1–10, doi:10.1109/CEIDP.2014.6995800

    Google Scholar 

  • Gerhard(-Multhaupt) R (2002) Less can be more – holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans Dielectr Electr Insul 9:850–859

    Article  Google Scholar 

  • Gross B, Gerhard(-Multhaupt) R, Berraissoul A, Sessler GM (1987) Electron-beam poling of piezoelectric polymer electrets. J Appl Phys 62:1429–1432

    Article  Google Scholar 

  • Heckmann G (1925) Die Gittertheorie der festen Körper (Lattice theory of solids). Ergebnisse der exakten Naturwissenschaften (Springer Tracts in Modern Physics) 4:100–153. doi:10.1007/978-3-642-94259-4_5, in particular the diagram on page 140

    Article  Google Scholar 

  • Helfrich W (1971) The strength of piezoelectricity in liquid crystals. Z Naturforsch 26a:833–835

    Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn (“Gold Book”), compiled by AD McNaught, A Wilkinson. Blackwell, Oxford. XML on-line corrected version: http://goldbook.iupac.org (2006) created by M Nic, J Jirat, B Kosata; updates compiled by A Jenkins, last update: 2014-02-24, version: 2.3.3., ISBN 0-9678550-9-8. doi:10.1351/goldbook.DT07364

  • Katsouras I, Asadi K, Li M, van Driel TB, Kjaer KS, Zhao D, Lenz T, Gu Y, Blom PWM, Dmajanovic D, Nielsen MM, de Leeuw DM (2015) The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat Mater. doi:10.1038/nmat4423

    Google Scholar 

  • Katzir S (2006) The beginnings of piezoelectricity – a study in mundane physics. Boston Studies in Philosophy and Science, vol 246. Springer, Dordrecht. doi:10.1007/978-1-4020-4670-4

    Google Scholar 

  • Kawai H (1969) The piezoelectricity of poly(vinylidene Fluoride). Jpn J Appl Phys 8:975–976

    Article  Google Scholar 

  • Kepler RG (1978) Piezoelectricity, pyroelectricity, and ferroelectricity in organic materials. Ann Rev Phys Chem 29:497–518

    Article  Google Scholar 

  • Kepler RG, Anderson RA (1980) Piezoelectricity in polymers. CRC Crit Rev Sol State Mater Sci 9:399–447

    Article  Google Scholar 

  • Lee HY, Shkel YM (2004) The dielectrostriction effect for NDE of polymeric materials. Proc SPIE 5391:211–218

    Article  Google Scholar 

  • Lee HY, Peng Y, Shkel YM (2005) Strain-dielectric response of dielectrics as foundation for electrostriction stresses. J Appl Phys 98:074104

    Article  Google Scholar 

  • Mellinger A (2003) Dielectric resonance spectroscopy: a versatile tool in the quest for better piezoelectric polymers. IEEE Trans Dielectr Electr Insul 10:842–861

    Article  Google Scholar 

  • Meyer RB (1969) Piezoelectric effects in liquid crystals. Phys Rev Lett 22:918–921

    Article  Google Scholar 

  • Newnham RE (2005) Properties of materials: anisotropy, symmetry, structure. Oxford University Press, Oxford/New York

    Google Scholar 

  • Newnham RE, Sundar V, Yimnirun R, Su J, Zhang QM (1997) Electrostriction: nonlinear electromechanical coupling in solid dielectrics. J Phys Chem 101:10141–10150

    Article  Google Scholar 

  • Ploss B, Ploss B, Shin FG, Chan HLW, Choy CL (2000) Pyroelectric or piezoelectric compensated ferroelectric composites. Appl Phys Lett 76:2776–2778

    Article  Google Scholar 

  • Poddar S, Ducharme S (2013) Measurement of the flexoelectric response in ferroelectric and relaxor polymer thin films. Appl Phys Lett 103:202901

    Article  Google Scholar 

  • Qiu X, Holländer L, Wirges W, Gerhard R, Basso HC (2013) Direct hysteresis measurements on ferroelectret films by means of a modified Sawyer-Tower circuit. J Appl Phys 113:224106

    Article  Google Scholar 

  • Qiu X, Wirges W, Gerhard R (2014) Polarisation and hysteresis in tubular-channel fluoro-ethylenepropylene-copolymer ferroelectrets. Ferroelectrics 472:100–109

    Article  Google Scholar 

  • Richert R (2005) Dielectric modulus: experiment, application, and interpretation. Arizona State University, Tutorial “Broadband Dielectric Spectroscopy and its Applications” http://www.uni-leipzig.de/~ids2012/tutorials/richert2005.pdf. Cited 20 Dec 2015

  • Richert R (2010) Non-linear effects in physics of dielectrics. Arizona State University, Tutorial “Broadband Dielectric Spectroscopy and its Applications” http://www.uni-leipzig.de/~ids2012/tutorials/richert2010.pdf. Cited 23 Dec 2015

  • Rollik D, Bauer S, Gerhard (-Multhaupt) R (1999) Separate contributions to the pyroelectricity in poly(vinylidene fluoride) from the amorphous and crystalline phases, as well as from their interface. J Appl Phys 85:3282–3288

    Article  Google Scholar 

  • Rychkov D, Altafim RAP, Gerhard R (2014) Unipolar ferroelectrets – following the example of the electret microphone more closely. In: Annual Report, IEEE Conference on Electrical Insulation and Dielectric Phenomena. IEEE, New York, pp 860–862. doi:10.1109/CEIDP.2014.6995907

    Google Scholar 

  • Sherrit S, Mukherjee BK (2012) Review of techniques for characterizing piezoelectric/electrostrictive material for transducer applications. In: Bharadwaja, SSN, Dorey, RA (eds) Dielectric and ferroelectric reviews. Research Signpost, Scarborough, Canada, pp 175–244. http://arxiv.org/pdf/0711.2657.pdf

  • Tagantsev AK (1991) Polarization in crystals and its response to thermal and elastic perturbations. Phase Trans 35:119–203

    Article  Google Scholar 

  • Tichý J, Erhart J, Kittinger E, Přívratská J (2010) Fundamentals of piezoelectric sensors. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Yang GM, Bauer-Gogonea S, Sessler GM, Bauer S, Ren W, WWirges W, Gerhard(- Multhaupt) R (1994) Selective poling of nonlinear optical polymer films by means of a monoenergetic electron beam. Appl Phys Lett 64:22–24

    Article  Google Scholar 

  • Zhang QM, Pan WY, Jang SJ, Cross LE (1988) The pressure dependence of the dielectric response and its relation to the electrostriction. Ferroelectrics 88:147–154

    Article  Google Scholar 

  • Zhao X, Wang Q (2014) Harnessing large deformation and instabilities of soft dielectrics: theory, experiment and application. Appl Phys Rev 1:021304

    Article  Google Scholar 

  • Zubko P, Catalan G, Tagantsev AK (2013) Flexoelectric effect in solids. Annu Rev Mater Res 43:387–421

    Article  Google Scholar 

Download references

Acknowledgments

The author is very much indebted to Ruy Altafim, Heitor Basso, Siegfried Bauer, Simona Bauer-Gogonea, the late Dilip Das-Gupta, Takeo Furukawa, the late Bernhard Gross, Sidney Lang, the late Guilherme Leal Ferreira, Axel Mellinger, the late Martin Perlman, Xunlin Qiu, Wei Ren, Dmitry Rychkov, Gerhard Sessler, Zhongfu Xia, and Werner Wirges for many years of fruitful collaborations and stimulating discussions on the topics of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reimund Gerhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gerhard, R. (2016). Piezoelectricity and Electrostriction. In: Carpi, F. (eds) Electromechanically Active Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31767-0_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31767-0_21-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-31767-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics