Skip to main content

Stable Distributions and Random Walks

  • Chapter
  • First Online:
Probability for Physicists

Part of the book series: Graduate Texts in Physics ((GTP))

  • 3770 Accesses

Abstract

Stable distributions are special types of probability distributions whose origin is a particular limit regime of other types of distributions. They are closely related to the simple convolution process, which is introduced first for continuous and then for discrete random variables. This leads to the central limit theorem as one of the most important results of probability theory, as well as to its generalized version which is useful in the analysis of random walks. Extreme-value distributions are also presented, as they possess a limit theorem of their own (Fisher–Tippett–Gnedenko). The last part is devoted to the discussion of discrete-time and continuous-time random walks, together with their characteristic diffusion properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.L. Evans, L.M. Leemis, Algorithms for computing the distributions of sums of discrete random variables. Math. Comp. Model. 40, 1429 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. W. Feller, An Introduction to Probability Theory and Its Applications, vol. 2, 2nd edn. (Wiley, New York, 1971)

    MATH  Google Scholar 

  3. I.S. Tyurin, On the accuracy of the Gaussian approximation. Dokl. Math. 80, 840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Lyon, Why are normal distributions normal? Brit. J. Phil. Sci. 65, 621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Kuščer, A. Kodre, Mathematik in Physik und Technik (Springer, Berlin, 1993)

    MATH  Google Scholar 

  6. J.P. Nolan, Stable Distributions—Models for Heavy Tailed Data (Birkhäuser, Boston, 2010)

    Google Scholar 

  7. S. Borak, W. Härdle, R. Weron, Stable Distributions, SFB 649 Discussion Paper 2005–008 (Humboldt University Berlin, Berlin, 2005)

    Google Scholar 

  8. S. Širca, M. Horvat, Computational Methods for Physicists (Springer, Berlin, 2012)

    MATH  Google Scholar 

  9. GSL (GNU Scientific Library), http://www.gnu.org/software/gsl

  10. G.G. Márquez, One Hundred Years of Solitude (HarperCollins, New York, 2006)

    Google Scholar 

  11. E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958)

    MATH  Google Scholar 

  12. S. Coles, An Introduction to Statistical Modeling of Extreme Values (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  13. M.R. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  14. S.I. Resnick, Extreme Values, Regular Variation, and Point Processes (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  15. R.A. Fisher, L.H.C. Tippett, On the estimation of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Phil. Soc. 24, 180 (1928)

    Article  ADS  MATH  Google Scholar 

  16. B.V. Gnedenko, Sur la distribution limite du terme maximum d’une série aléatoire. Ann. Math. 44, 423 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  17. MeteoSwiss IDAWEB, http://gate.meteoswiss.ch/idaweb/

  18. B.D. Hughes, Random Walks and Random Environments: Vol. 1: Random Walks (Oxford University Press, New York, 1995)

    MATH  Google Scholar 

  19. M. Bazant, Random walks and diffusion, MIT OpenCourseWare, Course 18.366, http://ocw.mit.edu/courses/mathematics/

  20. E.W. Montroll, G.H. Weiss, Random walks on lattices II. J. Math. Phys. 6, 167 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M.F. Shlesinger, B.J. West, J. Klafter, Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  23. V. Tejedor, R. Metzler, Anomalous diffusion in correlated continuous time random walks. J. Phys. A: Math. Theor. 43, 082002 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. J.J. Brehm, W.J. Mullin, Introduction to the Structure of Matter (Wiley, New York, 1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Širca .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Širca, S. (2016). Stable Distributions and Random Walks. In: Probability for Physicists. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-31611-6_6

Download citation

Publish with us

Policies and ethics