Skip to main content

Braid Groups and Euclidean Simplices

  • Chapter
  • First Online:
Configuration Spaces

Part of the book series: Springer INdAM Series ((SINDAMS,volume 14))

  • 986 Accesses

Abstract

When Daan Krammer and Stephen Bigelow independently proved that braid groups are linear, they used the Lawrence–Krammer–Bigelow representation for generic values of its variables q and t. The t variable is closely connected to the traditional Garside structure of the braid group and plays a major role in Krammer’s algebraic proof. The q variable, associated with the dual Garside structure of the braid group, has received less attention. In this article we give a geometric interpretation of the q portion of the LKB representation in terms of an action of the braid group on the space of non-degenerate euclidean simplices. In our interpretation, braid group elements act by systematically reshaping (and relabeling) euclidean simplices. The reshapings associated to the simple elements in the dual Garside structure of the braid group are of an especially elementary type that we call relabeling and rescaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups. Mem. Am. Math. Soc. 202 (949), x+159 (2009)

    Google Scholar 

  2. S. Bigelow, The Burau representation is not faithful for n = 5. Geom. Topol. 3, 397–404 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.J. Bigelow, Braid groups are linear. J. Am. Math. Soc. 14 (2), 471–486 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bigelow, The Lawrence–Krammer representation, in Topology and Geometry of Manifolds (Athens, GA, 2001). Proceedings of Symposia in Pure Mathematics, vol. 71 (American Mathematical Society, Providence, RI, 2003), pp. 51–68.

    Google Scholar 

  5. J. Birman, K.H. Ko, S.J. Lee, A new approach to the word and conjugacy problems in the braid groups. Adv. Math. 139 (2), 322–353 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Brady, J. McCammond, Factoring Euclidean isometries. Int. J. Algebra Comput. 25 (1–2), 325–347 (2015). doi:10.1142/S0218196715400135

    Article  MathSciNet  MATH  Google Scholar 

  7. A.M. Cohen, D.B. Wales, Linearity of Artin groups of finite type. Isr. J. Math. 131, 101–123 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Digne, On the linearity of Artin braid groups. J. Algebra 268 (1), 39–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. T. Ito, B. Wiest, Lawrence–Krammer–Bigelow representations and dual Garside length of braids. Geom. Topol. 19 (3), 1361–1381 (2015). doi:10.2140/gt.2015.19.1361

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Krammer, The braid group \(B_{4}\) is linear. Invent. Math. 142 (3), 451–486 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Krammer, Braid groups are linear. Ann. Math. (2) 155 (1), 131–156 (2002)

    Google Scholar 

  12. D. Margalit, J. McCammond, Geometric presentations for the pure braid group. J. Knot Theor. Ramif. 18 (1), 1–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. McCammond, Noncrossing partitions in surprising locations. Am. Math. Mon. 113 (7), 598–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Paris, Artin monoids inject in their groups. Comment. Math. Helv. 77 (3), 609–637 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Simion, D. Ullman, On the structure of the lattice of noncrossing partitions. Discrete Math. 98 (3), 193–206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Leyton Chisholm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chisholm, E.L., McCammond, J. (2016). Braid Groups and Euclidean Simplices. In: Callegaro, F., Cohen, F., De Concini, C., Feichtner, E., Gaiffi, G., Salvetti, M. (eds) Configuration Spaces. Springer INdAM Series, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-31580-5_12

Download citation

Publish with us

Policies and ethics