Skip to main content

Biological Responses Triggered by Laser-Driven Ion Beams

  • Chapter
  • First Online:
Laser-Driven Particle Acceleration Towards Radiobiology and Medicine

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Laser-induced ion acceleration has potential advantages in terms of compactness and cost, compared with conventional ion accelerators. This feature can lead to future applications in hadron cancer therapy. The other feature of the laser-driven source is the extremely high peak current due mostly to the short duration of a single proton bunch. Typically, single high-intensity laser pulses can produce \(10^{8} - 10^{11}\) protons per bunche, corresponding to 1–1000 A peak ion currents 1-mm from the target. Recently, some pioneering works have experimentally investigated biological effects of such high-current, short-bunch laser-driven ion beams. In this chapter, we review the latest developments of laser-driven radiation beamlines for biomedical studies and discuss the biological effects triggered by high-current, short-bunch radiation beams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.V. Bulanov, T. Zh Esirkepov, V.S. Khoroshkov, A.V. Kuznetsov, F. Pegoraro, Oncological hadrontherapy with laser ion accelerators. Phys. Lett., Sect. A: Gen. Atomic Solid State Phys. 299(2–3):240–247 (2002)

    Google Scholar 

  2. S.V. Bulanov, J.J. Wilkens, T.Z. Esirkepov, G. Korn, G. Kraft, S.D. Kraft, M. Molls, V.S. Khoroshkov, Laser ion acceleration for hadron therapy. Phys. Usp. 57(12), 1149–1179 (2014)

    Article  ADS  Google Scholar 

  3. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85(2), 751–793 (2013)

    Article  ADS  Google Scholar 

  4. H. Daido, M. Nishiuchi, Alexander S Pirozhkov. Review of laser-driven ion sources and their applications. Rep Prog Phys. 75(5), 056401 (2012)

    Google Scholar 

  5. M. Borghesi, M. Roth, Fast ion generation by high intensity laser-irradiation of solid targets and applications. Fusion Sci. Technol. 49, 412–439 (2006)

    Google Scholar 

  6. J. Fuchs, P. Antici, E. D’Humières, E. Lefebvre, M. Borghesi, E. Brambrink, C. A. Cecchetti, M. Kaluza, V. Malka, M. Manclossi, S. Meyroneinc, P. Mora, J. Schreiber, T. Toncian, H. Pépin, P. Audebert, Laser-driven proton scaling laws and new paths towards energy increase. Nat. Phys. 2(1), 48–54 (2006)

    Google Scholar 

  7. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92(17), 175003 (2004)

    Article  ADS  Google Scholar 

  8. U. Linz, J. Alonso, What will it take for laser driven proton accelerators to be applied to tumor therapy? Phys. Rev Spec Top—Accelerators Beams 10(9), 094801 (2007)

    Article  ADS  Google Scholar 

  9. T.E. Cowan, J. Fuchs, H. Ruhl, A. Kemp, P. Audebert, M. Roth, R. Stephens, I. Barton, A. Blazevic, E. Brambrink, J. Cobble, J. Fernández, J.C. Gauthier, M. Geissel, M. Hegelich, J. Kaae, S. Karsch, G.P. Le Sage, S. Letzring, M. Manclossi, S. Meyroneinc, A. Newkirk, H. Pépin, N. Renard-LeGalloudec, Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator. Phys. Rev. Lett. 92(20), 204801 (2004)

    Article  ADS  Google Scholar 

  10. J. Kawanaka, N. Miyanaga, H. Azechi, T. Kanabe, T. Jitsuno, K. Kondo, Y. Fujimoto, N. Morio, S. Matsuo, Y. Kawakami, R. Mizoguchi, K. Tauchi, M. Yano, S. Kudo, Y. Ogura, 3.1-kJ chirped-pulse power amplification in the LFEX laser. J. Phys: Conf. Ser. 112(3), 032006 (2008)

    ADS  Google Scholar 

  11. E.R. Epp, Herbert Weiss, Ann Santomasso, The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiat. Res. 34(2), 320–325 (1968)

    Article  Google Scholar 

  12. E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, L. Laschinsky, E. Lessmann, M. Nicolai, J. Pawelke, C. Richter, R. Sauerbrey, H.P. Schlenvoigt, M. Baumann, Establishment of technical prerequisites for cell irradiation experiments with laser-accelerated electrons. Med. Phys. 37(4), 1392–1400 (2010)

    Article  Google Scholar 

  13. L. Laschinsky, M. Baumann, E. Beyreuther, W. Enghardt, M. Kaluza, L. Karsch, E. Lessmann, D. Naumburger, M. Nicolai, C. Richter, R. Sauerbrey, H.-P.Schlenvoigt, J. Pawelke, Radiobiological effectiveness of laser accelerated electrons in comparison to electron beams from a conventional linear accelerator. J Radiat. Res. 53(3), 395–403 (2012)

    Google Scholar 

  14. C Tillman, G Grafström, A.C. Jonsson, B.A. Jönsson, I. Mercer, S. Mattsson, S.E. Strand, S. Svanberg, Survival of mammalian cells exposed to ultrahigh dose rates from a laser-produced plasma x-ray source. Radiology, 213(3), 860–865 (1999)

    Google Scholar 

  15. K. Shinohara, H. Nakano, N. Miyazaki, M. Tago, R. Kodama, Effects of single-pulse (≤ or ps) X-rays from laser-produced plasmas on mammalian cells. J. Radiat. Res. 45(4), 509–514 (2004)

    Article  Google Scholar 

  16. K. Sato, M. Nishikino, Y. Okano, S. Ohshima, N. Hasegawa, M. Ishino, T. Kawachi, H. Numasaki, T. Teshima, H. Nishimura, g-H2AX and phosphorylated ATM focus formation in cancer cells after laser plasma X irradiation. Radiat. Res. 174(4), 436–445 (2010)

    Article  Google Scholar 

  17. A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, H. Numasaki, M. Murakami, Y. Demizu, S. Akagi, S. Nagayama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, a. S. Pirozhkov, M. Ikegami, M. Tampo, H. Sakaki, M. Suzuki, I. Daito, Y. Oishi, H. Sugiyama, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, P. R. Bolton, H. Daido, Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells. Appl. Phys. Lett. 94(18), 181502 (2009)

    Google Scholar 

  18. S.D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T.E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. SchC!rer, M. Sobiella, J. Woithe, U. Schramm, J. Pawelke, Dose-dependent biological damage of tumour cells by laser-accelerated proton beams. New J. Phys. 12(8), 085003 (2010)

    Google Scholar 

  19. C. Richter, L. Karsch, Y. Dammene, S.D. Kraft, J Metzkes, U. Schramm, M. Schürer, M. Sobiella, A. Weber, K. Zeil, J. Pawelke, A dosimetric system for quantitative cell irradiation experiments with laser-accelerated protons. Phys Med. Biol. 56(6), 1529–1543 (2011)

    Google Scholar 

  20. K. Zeil, M. Baumann, E. Beyreuther, T. Burris-Mog, T.E. Cowan, W. Enghardt, L. Karsch, S.D. Kraft, L. Laschinsky, J. Metzkes, D. Naumburger, M. Oppelt, C. Richter, R. Sauerbrey, M. Schürer, U. Schramm, J. Pawelke, Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses. Appl. Phys. B: Lasers Opt. 110, 437–444 (2013)

    Article  ADS  Google Scholar 

  21. J. Metzkes, L. Karsch, S.D. Kraft, J. Pawelke, C. Richter, M. Schürer, M. Sobiella, N. Stiller, K. Zeil, U. Schramm, A scintillator-based online detector for the angularly resolved measurement of laser-accelerated proton spectra. Rev. Sci. Instrum. 83(12), 123301 (2012)

    Article  ADS  Google Scholar 

  22. D. Doria, K.F. Kakolee, S. Kar, S.K. Litt, F. Fiorini, H. Ahmed, S. Green, J.C.G. Jeynes, J. Kavanagh, D. Kirby, K.J. Kirkby, C.L. Lewis, M.J. Merchant, G. Nersisyan, R. Prasad, K.M. Prise, G. Schettino, M. Zepf, M. Borghesi, Biological effectiveness on live cells of laser driven protons at dose rates exceeding 109 Gy/s. AIP Adv. 2(1), 011209 (2012)

    Article  ADS  Google Scholar 

  23. F. Fiorini, D. Kirby, M. Borghesi, D. Doria, J.C. Jeynes, Kf Kakolee, S. Kar, S. Kaur, K.J. Kirby, M.J. Merchant, Dosimetry and spectral analysis of a radiobiological experiment using laser-driven proton beams. Phys. Med. Biol. 56, 6969–6982 (2011)

    Google Scholar 

  24. J. Bin, K. Allinger, W. Assmann, G. Dollinger, G.A. Drexler, A.A. Friedl, D. Habs, P. Hilz, R. Hoerlein, N. Humble, S. Karsch, K. Khrennikov, D. Kiefer, F. Krausz, W. Ma, D. Michalski, M. Molls, S. Raith, S. Reinhardt, B. Röper, T.E. Schmid, T. Tajima, J. Wenz, O. Zlobinskaya, J. Schreiber, J.J. Wilkens, A laser-driven nanosecond proton source for radiobiological studies. Appl. Phys. Lett. 101(24), 243701 (2012)

    Google Scholar 

  25. V. Scuderi, S. Bijan Jia, M. Carpinelli, G.A. P. Cirrone, G. Cuttone, G. Korn, T. Licciardello, M. Maggiore, D. Margarone, P. Pisciotta, F. Romano, F. Schillaci, C. Stancampiano, A. Tramontana, Development of an energy selector system for laser-driven proton beam applications. Nucl. Instrum. Meth. Phys Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 740, 87–93 (2014)

    Google Scholar 

  26. G.A.P. Cirrone, M. Carpinelli, G. Cuttone, S. Gammino, S. Bijan Jia, G. Korn, M. Maggiore, L. Manti, D. Margarone, J. Prokupek, M. Renis, F. Romano, F. Schillaci, B. Tomasello, L. Torrisi, A. Tramontana, A. Velyhan, ELIMED, future hadrontherapy applications of laser-accelerated beams. Nucl. Instr. Meth. Phys. Res. Sect. A: Accelerators, Spectrometers, Detectors and Associated Equipment, 730, 174–177 (2013)

    Google Scholar 

  27. A. Yogo, K. Sato, M. Nishikino, T. Maeda, H. Sakaki, T. Hori, K. Ogura, M. Nishiuchi, T. Teshima, H. Nishimura, K. Kondo, P.R. Bolton, S. Kawanishi. Measurement of DNA double-strand break yield in human cancer cells by high-current, short-duration bunches of laser-accelerated protons. Japanese J. Appl. Phys. 50(10 PART 1), 106401 (2011)

    Google Scholar 

  28. A. Yogo, T. Maeda, T. Hori, H. Sakaki, K. Ogura, M. Nishiuchi, A. Sagisaka, H. Kiriyama, H. Okada, S. Kanazawa, T. Shimomura, Y. Nakai, M. Tanoue, F. Sasao, P.R. Bolton, M. Murakami, T. Nomura, S. Kawanishi, K. Kondo, Measurement of relative biological effectiveness of protons in human cancer cells using a laser-driven quasimonoenergetic proton beamline. Appl. Phys. Lett. 98(5), 053701 (2011)

    Article  ADS  Google Scholar 

  29. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, H. Sasao, M. Tanoue, S. Kanazawa, D. Wakai, F. Sasao, H. Okada, I. Daito, M. Suzuki, S. Kondo, K. Kondo, A. Sugiyama, P.R. Bolton, A. Yokoyama, H. Daido, S. Kawanishi, T. Kimura, T. Tajima. High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. Opt. Lett. 35(10), 1497–1499 (2010)

    Google Scholar 

  30. A. Yogo, H. Daido, A. Fukumi, Z. Li, K. Ogura, A. Sagisaka, A.S. Pirozhkov, S. Nakamura, Y. Iwashita, T. Shirai, A. Noda, Y. Oishi, T. Nayuki, T. Fujii, K. Nemoto, I.W. Choi, JHee Sung, D.K. Kyeong Ko, J. Lee, M. Kaneda, A. Itoh. Laser prepulse dependency of proton-energy distributions in ultraintense laser-foil interactions with an online time-of-flight technique. Phys. Plasmas, 14(4), 043104 (2007)

    Google Scholar 

  31. J.F. Ziegler, J.P. Biersack, M.D. Ziegler. SRIM, The Stopping and Range of ions in Matter. SRIM Company, 2008

    Google Scholar 

  32. M. Belli, R. Cherubini, S. Finotto, G. Moschini, O. Sapora, G. Simone, M.A. Tabocchini. RBE-LET relationship for the survival of V79 cells irradiated with low energy protons. Int. J. Radiat. Biol. 55(1), 93–104 (1989)

    Google Scholar 

  33. J.A. Downs, Michel C Nussenzweig, and André Nussenzweig. Chromatin dynamics and the preservation of genetic information. Nature, 447(7147):951–958 (2007)

    Google Scholar 

  34. W. Luo, E. Fourkal, J. Li, C.-M. Ma, Particle selection and beam collimation system for laser-accelerated proton beam therapy. Med. Phys. 32(3), 794–806 (2005)

    Article  Google Scholar 

  35. K. Kagawa, M. Murakami, Y. Hishikawa, M. Abe, T. Akagi, T. Yanou, G. Kagiya, Y. Furusawa, K. Ando, K. Nojima, M. Aoki, T. Kanai, Preclinical biological assessment of proton and carbon ion beams at Hyogo Ion Beam Medical Center. Int. J. Radiat. Oncol. Biol. Phys. 54(3), 928–938 (2002)

    Article  Google Scholar 

  36. B.G. Douglas, J.F. Fowler, The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat. Res. 66(2), 401–426 (1976)

    Article  Google Scholar 

  37. M. Folkard, K.M. Prise, B. Vojnovic, H.C. Newman, M.J. Roper, B.D. Michael, Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. Int. J. Radiat. Biol. 69(6), 729–738 (1996)

    Article  Google Scholar 

  38. Y. Furusawa, K. Fukutsu, M. Aoki, H. Itsukaichi, K. Eguchi-Kasai, H. Ohara, F. Yatagai, T. Kanai, K. Ando, Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams. Radiat. Res. 154(5), 485–496 (2000)

    Article  Google Scholar 

  39. M. Burton, J.L. Magee. (eds.), Advances in radiation chemistry. vol 1, (1969)

    Google Scholar 

  40. R D Cooper and R W Wood. Physical mechanisms in radiation biology. Technical Report CONF 721001 (1974)

    Google Scholar 

  41. J. Kiefer, H. Straaten, A model of ion track structure based on classical collision dynamics. Phys. Med. Biol. 31(11), 1201–1209 (1986)

    Article  Google Scholar 

  42. K. Moribayashi, Incorporation of the effect of the composite electric fields of molecular ions as a simulation tool for biological damage due to heavy ion irradiation II. AIP Conf. Proc. 1465, 241–245 (2012)

    Article  ADS  Google Scholar 

  43. E. Fourkal, I. Velchev, C.-M. Ma, J. Fan, Linear energy transfer of proton clusters. Phys. Med. Biol. 56(10), 3123–3136 (2011)

    Article  Google Scholar 

  44. U. Masood, M. Bussmann, T.E. Cowan, W. Enghardt, L. Karsch, F. Kroll, U. Schramm, J. Pawelke. A compact solution for ion beam therapy with laser accelerated protons. Appl. Phys. B. 41–52 (2014)

    Google Scholar 

  45. K.M. Hofmann, S. Schell, J.J. Wilkens, Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams. AIP Conf. Proc. 1546(11), 81–83 (2013)

    Article  ADS  Google Scholar 

  46. Sebastian Faby, Jan J. Wilkens, Assessment of secondary radiation and radiation protection in laser-driven proton therapy. Zeitschrift für Medizinische Physik 25(2), 112–122 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akifumi Yogo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yogo, A. (2016). Biological Responses Triggered by Laser-Driven Ion Beams. In: Giulietti, A. (eds) Laser-Driven Particle Acceleration Towards Radiobiology and Medicine. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31563-8_11

Download citation

Publish with us

Policies and ethics