Skip to main content

Cell Sources and Nanotechnology for Neural Tissue Engineering

  • Chapter
  • First Online:
Neural Engineering
  • 1720 Accesses

Abstract

Neural injuries resulting in loss of sensory and motor functions have less than ideal restoration due to the limited self-regenerative capacity of the nervous system. Neural tissue engineering strategies integrating cells with biomaterials are already leading to significant advancements for various neural defect repairs. In particular, stem cells with the capacity of differentiating into all relevant neural cell types essential to replace degenerated neural tissues have garnered greater interest. With regard to biomaterials, nanomaterials offer a new perspective in regenerative medicine owing to their unique physical, chemical, and biological properties which can interact with neural cells at the molecular level. In this chapter, we will discuss about various stem cells including embryonic, fetal, neonatal, and adult stem cells, their differentiation potential toward neural lineages as well as their use in engineering implantable neural grafts. We will also discuss the potential applications of various biomimetic nanomaterials such as carbon-based nanomaterials and engineered 3D nanofibrous scaffolds for neural tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan, P.M. 1999. Nanotubes from Carbon. Chemical Reviews 99: 1787–1799.

    Article  Google Scholar 

  • Bajpai, V.K., and S.T. Andreadis. 2012. Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering, Part B: Reviews 18: 45–425.

    Article  Google Scholar 

  • Bradl, M., and H. Lassmann. 2010. Oligodendrocytes: biology and pathology. Acta Neuropathologica 119: 37–53.

    Article  Google Scholar 

  • Burger, C., Hsiao, B. S. & Chu, B. Nanofibrous materials and their applications. 2006 PALO ALTO. ANNUAL REVIEWS, 333–368.

    Google Scholar 

  • Cheng, T.-Y., M.-H. Chen, W.-H. Chang, M.-Y. Huang, and T.-W. Wang. 2013. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering. Biomaterials 34: 2005–2016.

    Article  Google Scholar 

  • Cho, E.-G., S.A. Lipton, J.D. Zaremba, S.R. Mckercher, M. Talantova, S. Tu, E. Masliah, S.F. Chan, N. Nakanishi, and A. Terskikh. 2011. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS ONE 6, e24027.

    Article  Google Scholar 

  • Cho, J.-S., S.-K. Park, H.-W. Park, S. Roh, S.-K. Kang, K.-S. Paik, and M.-S. Chang. 2009. Transplantation of mesenchymal stem cells enhances axonal outgrowth and cell survival in an organotypic spinal cord slice culture. Neuroscience Letters 454: 43–48.

    Article  Google Scholar 

  • Cui, B., E.N. Li, B.O. Yang, and B.O. Wang. 2014. Human umbilical cord blood-derived mesenchymal stem cell transplantation for the treatment of spinal cord injury. Experimental and Therapeutic Medicine 7: 1233–1236.

    Google Scholar 

  • Cui, L., J. Jiang, L. Wei, X. Zhou, J.L. Fraser, B.J. Snider, and S.P. Yu. 2008. Transplantation of Embryonic Stem Cells Improves Nerve Repair and Functional Recovery After Severe Sciatic Nerve Axotomy in Rats. Stem Cells 26: 1356–1365.

    Article  Google Scholar 

  • Cunha, C., S. Panseri, and S. Antonini. 2011. Emerging nanotechnology approaches in tissue engineering for peripheral nerve regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine 7: 50–59.

    Google Scholar 

  • Dai, H. 2002. Carbon nanotubes: opportunities and challenges. Surface Science 500: 218–241.

    Article  Google Scholar 

  • De Jong, K.P., and J.W. Geus. 2000. Carbon Nanofibers: Catalytic Synthesis and Applications. Catalysis Reviews—Science and Engineering 42: 481–510.

    Article  Google Scholar 

  • Doetsch, F. 2003. The glial identity of neural stem cells. Nature Neuroscience 6: 1127–1134.

    Article  Google Scholar 

  • Evans, M.J., and M.H. Kaufman. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156.

    Article  Google Scholar 

  • Falvo, M.R., G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, and R. Superfine. 1997. Bending and buckling of carbon nanotubes under large strain. Nature 389: 582–584.

    Article  Google Scholar 

  • Feng, L.C., N. Xie, and J. Zhong. 2014. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials 7: 3919–3945.

    Article  Google Scholar 

  • Firme Iii, C.P., and P.R. Bandaru. 2010. Toxicity issues in the application of carbon nanotubes to biological systems. Nanomedicine: Nanotechnology, Biology and Medicine 6: 245–256.

    Google Scholar 

  • Fraczek-Szczypta, A. 2014. Carbon nanomaterials for nerve tissue stimulation and regeneration. Materials Science & Engineering C-Materials for Biological Applications 34: 35–49.

    Article  Google Scholar 

  • Gaillard, C., A. Bianco, G. Celiot, S. Li, F.M. Toma, H. Dumortier, G. Spaliuto, B. Cacciari, M. Prato, and L. Ballerini. 2009. Carbon nanotubes carrying cell-adhesion peptides do not interfere with neuronal functionality. Advanced Materials 21: 2903–2908.

    Article  Google Scholar 

  • George, M.W., and G. Bartosz. 2002. Self-Assembly at All Scales. Science 295: 2418–2421.

    Article  Google Scholar 

  • Gilmore, J.L., X. Yi, L. Quan, and A.V. Kabanov. 2008. Novel Nanomaterials for Clinical Neuroscience. Journal of Neuroimmune Pharmacology 3: 83–94.

    Article  Google Scholar 

  • Goslin, K., D.J. Schreyer, J.H.P. Skene, and G. Banker. 1988. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature 336: 672–674.

    Article  Google Scholar 

  • Guo, T., P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley. 1995. Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization. Chemical Physics Letters 243: 49–54.

    Article  Google Scholar 

  • Hofstetter, C.P., E.J. Schwarz, D. Hess, J. Widenfalk, A. El Manira, D.J. Prockop, and L. Olson. 2002. Marrow Stromal Cells Form Guiding Strands in the Injured Spinal Cord and Promote Recovery. Proceedings of the National Academy of Sciences of the United States of America 99: 2199–2204.

    Article  Google Scholar 

  • Hu, H., Y. Ni, S.K. Mandal, V. Montana, B. Zhao, R.C. Haddon, and V. Parpura. 2005. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. The Journal of Physical Chemistry, B 109: 4285–4289.

    Article  Google Scholar 

  • Hu, L., D.S. Hecht, and G. Grüner. 2010. Carbon nanotube thin films: Fabrication, properties, and applications. Chemical Reviews 110: 5790–5844.

    Article  Google Scholar 

  • Hwang, J.-Y., U.S. Shin, W.-C. Jang, J.K. Hyun, I.B. Wall, and H.-W. Kim. 2012. Biofunctionalized carbon nanotubes in neural regeneration: a mini-review. Nanoscale 5: 487–497.

    Article  Google Scholar 

  • Inagaki, M., Y. Yang, and F. Kang. 2012. Carbon nanofibers prepared via electrospinning. Advanced Materials 24: 2547.

    Article  Google Scholar 

  • Iwasaki, M., J.T. Wilcox, Y. Nishimura, K. Zweckberger, H. Suzuki, J. Wang, Y. Liu, S.K. Karadimas, and M.G. Fehlings. 2014. Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functional recovery in cervical spinal cord injury. Biomaterials 35: 2617–2629.

    Article  Google Scholar 

  • Jan, E., and N.A. Kotov. 2007. Successful Differentiation of Mouse Neural Stem Cells on Layer-by-Layer Assembled Single-Walled Carbon Nanotube Composite. Nano Letters 7: 1123–1128.

    Article  Google Scholar 

  • Kim, C., K.S. Yang, M. Kojima, K. Yoshida, Y.J. Kim, Y.A. Kim, and M. Endo. 2006. Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Advanced Functional Materials 16: 2393–2397.

    Article  Google Scholar 

  • Kyle, S., A. Aggeli, E. Ingham, and M.J. Mcpherson. 2009. Production of self-assembling biomaterials for tissue engineering. Trends in Biotechnology 27: 423–433.

    Article  Google Scholar 

  • Leipzig, N.D., and M.S. Shoichet. 2009. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30: 6867–6878.

    Article  Google Scholar 

  • Li, D., Y. Wang, and Y. Xia. 2004. Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films. Advanced Materials 16: 361–366.

    Article  Google Scholar 

  • Li, N., G. Cheng, Q. Zhang, S. Gao, Q. Song, R. Huang, L. Wang, L. Liu, J. Dai, and M. Tang. 2013. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Scientific Reports 3: 1604.

    Google Scholar 

  • Liu, S., Y. Qu, T.J. Stewart, M.J. Howard, S. Chakrabortty, T.F. Holekamp, and J.W. Mcdonald. 2000. Embryonic Stem Cells Differentiate into Oligodendrocytes and Myelinate in Culture and after Spinal Cord Transplantation. Proceedings of the National Academy of Sciences of the United States of America 97: 6126–6131.

    Article  Google Scholar 

  • Mattson, M.P., R.C. Haddon, and A.M. Rao. 2000. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. Journal of Molecular Neuroscience 14: 175–182.

    Article  Google Scholar 

  • Mcdonald, J.W., X.-Z. Liu, Y. Qu, S. Liu, S.K. Mickey, D. Turetsky, D.I. Gottlieb, and D.W. Choi. 1999. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Medicine 5: 1410–1412.

    Article  Google Scholar 

  • Mckenzie, J.L., M.C. Waid, R. Shi, and T.J. Webster. 2004. Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 25: 1309–1317.

    Article  Google Scholar 

  • Nisbet, D.R., L.M.Y. Yu, T. Zahir, J.S. Forsythe, and M.S. Shoichet. 2008. Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering. Journal of Biomaterials Science, Polymer Edition 19: 623–634.

    Article  Google Scholar 

  • Olson, H.E., G.E. Rooney, L. Gross, J.J. Nesbitt, K.E. Galvin, A. Knight, B. Chen, M.J. Yaszemski, and A.J. Windebank. 2009. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Engineering—Part A 15: 1797–1805.

    Article  Google Scholar 

  • Padmanabhan, J., and T.R. Kyriakides. 2015. Nanomaterials, Inflammation, and Tissue Engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7: 355–370.

    Google Scholar 

  • Park, I.-H., R. Zhao, J.A. West, A. Yabuuchi, H. Huo, T.A. Ince, P.H. Lerou, M.W. Lensch, and G.Q. Daley. 2008. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451: 141–146.

    Article  Google Scholar 

  • Park, S.Y., J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, and S. Hong. 2011. Enhanced differentiation of human neural stem cells into neurons on graphene. Advanced Materials 23: H263–H267.

    Article  Google Scholar 

  • Rodrı́Guez, F.J., E. Verdú, D. Ceballos, and X. Navarro. 2000. Nerve Guides Seeded with Autologous Schwann Cells Improve Nerve Regeneration. Experimental Neurology 161: 571–584.

    Article  Google Scholar 

  • Rogers, I., N. Yamanaka, R. Bielecki, C.J. Wong, S. Chua, S. Yuen, and R.F. Casper. 2007. Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Experimental Cell Research 313: 1839–1852.

    Article  Google Scholar 

  • Sanberg, P.R., A.E. Willing, S. Garbuzova‐Davis, S. Saporta, G. Liu, C.D. Sanberg, P.C. Bickford, S.K. Klasko, and N.S. El‐Badri. 2005. Umbilical Cord Blood‐Derived Stem Cells and Brain Repair. Annals of the New York Academy of Sciences 1049: 67–83.

    Article  Google Scholar 

  • Sandner, B., P. Prang, F.J. Rivera, L. Aigner, A. Blesch, and N. Weidner. 2012. Neural stem cells for spinal cord repair. Cell and Tissue Research 349: 349–362.

    Article  Google Scholar 

  • Scheib, J., and A. Hoke. 2013. Advances in peripheral nerve regeneration. Nature Reviews Neurology 9: 668–676.

    Article  Google Scholar 

  • Schmidt, C.E., and J.B. Leach. 2003. Neural Tissue Engineering: Strategies for Repair and Regeneration. Annual Review of Biomedical Engineering 5: 293–347.

    Article  Google Scholar 

  • Soldano, C., A. Mahmood, and E. Dujardin. 2010. Production, properties and potential of graphene. Carbon 48: 2127–2150.

    Article  Google Scholar 

  • Takahashi, K., and S. Yamanaka. 2006. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126: 663–676.

    Article  Google Scholar 

  • Tan, S.H., R. Inai, M. Kotaki, and S. Ramakrishna. 2005. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 46: 6128–6134.

    Article  Google Scholar 

  • Temple, S. 2001. The development of neural stem cells. Nature 414: 112–117.

    Article  Google Scholar 

  • Tibbetts, G.G., M.L. Lake, K.L. Strong, and B.P. Rice. 2007. A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology 67: 1709–1718.

    Article  Google Scholar 

  • Tse, W., and M.J. Laughlin. 2005. Umbilical cord blood transplantation: a new alternative option. Hematology/The Education Program of the American Society of Hematology 1: 377–383.

    Google Scholar 

  • Tu, Q., L. Pang, Y. Chen, Y.R. Zhang, R. Zhang, B.Z. Lu, and J.Y. Wang. 2014. Effects of surface charges of graphene oxide on neuronal outgrowth and branching. Analyst 139: 105–115.

    Article  Google Scholar 

  • Wang, A., Z. Tang, I.-H. Park, Y. Zhu, S. Patel, G.Q. Daley, and S. Li. 2011a. Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32: 5023–5032.

    Article  Google Scholar 

  • Wang, Y., J. Wang, J. Li, Z. Li, and Y. Lin. 2011b. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends in Biotechnology 29: 205–212.

    Article  Google Scholar 

  • Weightman, A., S. Jenkins, M. Pickard, D. Chari, and Y. Yang. 2014. Alignment of multiple glial cell populations in 3D nanofiber scaffolds: Toward the development of multicellular implantable scaffolds for repair of neural injury. Nanomedicine: Nanotechnology, Biology and Medicine 10: 291–295.

    Google Scholar 

  • Welberg, L. 2014. A synaptic role for microglia. Nature Reviews Neuroscience 15: 68–69.

    Article  Google Scholar 

  • Whalley, K. 2014. A dynamic role for astrocytes. Nature Reviews Neuroscience 15: 566.

    Article  Google Scholar 

  • Xie, J., W. Liu, M.R. Macewan, P.C. Bridgman, and Y. Xia. 2014. Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8: 1878–1885.

    Article  Google Scholar 

  • Xie, J., M.R. Macewan, A.G. Schwartz, and Y. Xia. 2010. Electrospun nanofibers for neural tissue engineering. Nanoscale 2: 35.

    Article  Google Scholar 

  • Xie, J., S.M. Willerth, X. Li, M.R. Macewan, A. Rader, S.E. Sakiyama-Elbert, and Y. Xia. 2009. The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30: 354–362.

    Article  Google Scholar 

  • Yan, L., F. Zhao, S. Li, Z. Hu, and Y. Zhao. 2011. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3: 362–382.

    Article  Google Scholar 

  • Yarin, A.L., S. Koombhongse, and D.H. Reneker. 2001. Bending instability in electrospinning of nanofibers. Journal of Applied Physics 104: 3018–3026.

    Article  Google Scholar 

  • Yu, J., R. Stewart, I.I. Slukvin, J.A. Thomson, M.A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J.L. Frane, S. Tian, J. Nie, G.A. Jonsdottir, and V. Ruotti. 2007. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 318: 1917–1920.

    Article  Google Scholar 

  • Zhang, H., G. Grüner, and Y. Zhao. 2013. Recent advancements of graphene in biomedicine. Journal of Materials Chemistry B 1: 2542–2567.

    Article  Google Scholar 

  • Zhang, L., and T.J. Webster. 2009. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 4: 66–80.

    Article  Google Scholar 

  • Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff. 2010. Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials 22: 3906–3924.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijie Grace Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhu, W., Castro, N., Harris, B., Zhang, L.G. (2016). Cell Sources and Nanotechnology for Neural Tissue Engineering. In: Zhang, L., Kaplan, D. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31433-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31433-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31431-0

  • Online ISBN: 978-3-319-31433-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics