Skip to main content

3° Oil Recovery: Fundamental Approaches and Principles of Microbially Enhanced Oil Recovery

  • Living reference work entry
  • First Online:
Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 164 Accesses

Abstract

Microbially enhanced oil recovery (MEOR) involves the use of microbes in petroleum reservoirs to enhance the amount of oil that can be produced. The microbes in MEOR are typically hydrocarbon-utilizing, nonpathogenic microorganisms that naturally occur in the reservoirs or are introduced. The microbes use hydrocarbons as a food source for their metabolic processes and excrete natural bio-products such as alcohols, gases, acids, surfactants, and polymers. These bio-products can change the physical-chemical properties of crude oils and/or modify oil-water-rock interactions that improve oil recovery.

An important requirement for devising an appropriate MEOR strategy is a clear understanding of the problem that needs to be addressed from a reservoir engineering point of view. In situ production of biopolymers is most suitable to address water channeling problems in heterogeneous reservoirs, while surfactant-, gas-, acid-, and alcohol-producing microbes may be more suitable for enhancing production from reservoirs where residual oil is trapped due to capillary forces. Ex situ production of chemicals, e.g., biosurfactants from bioreactors for injection in wells, offers the advantage of being more controllable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahimou F, Semmens MJ, Novak PJ, Haugstad G (2007) Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol 73:2897–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amani H (2015) Study of enhanced oil recovery by rhamnolipids in a homogeneous 2D micromodel. J Pet Sci Eng 128:212–219

    Article  CAS  Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil-recovery and oil pollution remediation – a review. Bioresour Technol 51:1–12

    Article  CAS  Google Scholar 

  • Belyaev SS, Borzenkov IA, Nazina TN, Rozanova EP, Glumov IF, Ibatullin RR, Ivanov MV (2004) Use of microorganisms in the biotechnology for the enhancement of oil recovery. Microbiology 73:590–598

    Article  CAS  Google Scholar 

  • Bryant SL, Lockhart TP (2002) Reservoir engineering analysis of microbial enhanced oil recovery. SPE Reserv Eval Eng 5:365–374. SPE 79719

    Article  CAS  Google Scholar 

  • Bryant RS, Rhonda PL (1996) World-wide applications of microbial technology for improving oil recovery. In: SPE/DOE Improved Oil Recovery Symposium, Tulsa, 21–24 April, 1996, International Microbial Enhanced Oil Recovery Conference and Related Technology for Solving Environmental Problems, Plano

    Google Scholar 

  • Cunningham AB, Sharp RR, Caccavo F, Gerlach R (2007) Effects of starvation on bacterial transport through porous media. Adv Water Resour 30:1583–1592

    Article  Google Scholar 

  • Dias HP, Pereira TMC, Vanini G, Dixini PV, Celante VG, Castro EVR, Vaz BG, Fleming P, Gomes AO, Aquije GMFV, Romão W (2014) Monitoring the degradation and the corrosion of naphthenic acids by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and atomic force microscopy. Fuel 126:85–95

    Article  CAS  Google Scholar 

  • Eckford R, Fedorak P (2002a) Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. J Ind Microbiol Biotechnol 29:83–92

    Article  CAS  PubMed  Google Scholar 

  • Eckford RE, Fedorak PM (2002b) Chemical and microbiological changes in laboratory incubations of nitrate amendment “sour” produced waters from three Western Canadian oil fields. J Ind Microbiol Biotechnol 29:243–254

    Article  CAS  PubMed  Google Scholar 

  • Fredrickson JK, Mckinley JP, Bjornstad BN, Long PE, Ringelberg DB, White DC, Krumholz LR, Suflita JM, Colwell FS, Lehman RM, Phelps TJ, Onstott TC (1997) Pore-size constraints on the activity and survival of subsurface bacteria in a late Cretaceous shale-sandstone sequence, Northwestern New Mexico. Geomicrobiol J 14:183–202

    Article  Google Scholar 

  • Gerlach, R., A. Cunningham (2012). Influence of Microbial biofilms on reactive transport in porous media. Porous media and its applications in science, engineering, and industry. K Vafai 1453: 276–283.

    Google Scholar 

  • Gieg LM, Jack TR, Foght JM (2011) Biological souring and mitigation in oil reservoirs. Appl Microbiol Biotechnol 92:263

    Article  CAS  PubMed  Google Scholar 

  • Grassia GS, Mclean KM, Glenat P, Bauld J, Sheehy AJ (1996) A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol Ecol 21:47–58

    Article  CAS  Google Scholar 

  • Gray MR, Yeung AFJM, Yarranton HW (2008) Potential microbial enhanced oil recovery processes: a critical analysis. Soc Pet Eng, SPE Pap 114676:25

    Google Scholar 

  • Gray ND, Sherry A, Hubert C, Dolfing J, Head IM (2010) Methanogenic degradation of petroleum hydrocarbons in subsurface environments: remediation, heavy oil formation, and energy recovery. Adv Appl Microbiol 72:137–161

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Gray ND (2016) Microbial biotechnology 2020; microbiology of fossil fuel resources. Microb Biotechnol 9:626–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Head IM, Jones MD, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  PubMed  Google Scholar 

  • Head IM, Gray ND, Larter SR (2014) Life in the slow lane; biogeochemistry of biodegraded petroleum containing reservoirs and implications for energy recovery and carbon management. Front Microbiol 5:566. 23 pp

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu P, Tom L, Singh A, Thomas BC, Baker BJ, Piceno YM, Andersen GL, Banfield JF (2016) Genome-resolved metagenomic analysis reveals roles for candidate phyla and other microbial community members in biogeochemical transformations in oil reservoirs. MBio 7(1):e01669-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubert CRJ, Oldenburg TBP, Fustic M, Gray ND, Larter SR, Penn K et al (2012) Massive dominance of Epsilonproteobacteria in formation waters from a Canadian oils and reservoir containing severely biodegraded oil. Environ Microbiol 14:387–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DM, Head IM, Gray ND, Adams JJ, Rowan AK, Aitken CM, Bennett B, Huang H, Brown A, Bowler BFJ, Oldenburg T, Erdmann M, Larter SR (2008) Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature 451:176–180

    Article  CAS  PubMed  Google Scholar 

  • Jones EJP, Voytek MA, Corum MD, Orem WH (2010) Stimulation of methane generation from nonproductive coal by addition of nutrients or a microbial consortium. Appl Environ Microbiol 76:7013–7022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen BB, Boetius A (2007) Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781

    Article  CAS  PubMed  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  CAS  PubMed  Google Scholar 

  • Kowalewski E, Rueslatten I, Steen KH, Bodtker G, Torsaeter O (2006) Microbial improved oil recovery – bacterial induced wettability and interfacial tension effects on oil production. J Pet Sci Eng 52:275–286

    Article  CAS  Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Maure A, Saldaña AA, Juarez AR (2005) Biotechnology application to EOR in Talara off-shore oil fields, North West Peru. Soc Pet Eng SPE 94934:1–24

    Google Scholar 

  • McCabe PJ (1998) Energy resources – cornucopia or empty barrel? Am Assoc Pet Geol Bull 82:2110–2134

    Google Scholar 

  • McInerney MJ, Duncan KE, Youssef N, Fincher T, Maudgalya SK, Folmsbee MJ, Knapp R, Simpson RR, Ravi N, Nagle D (2005) Development of microorganisms with improved transport and biosurfactant activity for enhanced oil recovery. Final Report, p 180

    Google Scholar 

  • Melaugh G, Hutchison J, Kragh KN, Irie Y, Roberts A, Bjarnsholt T et al (2016) Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLoS One 11(3):e0149683. doi:10.1371/journal.pone.0149683

    Article  PubMed  PubMed Central  Google Scholar 

  • Meredith W, Kelland SJ, Jones DM (2000) Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org Geochem 31:1059–1073

    Article  CAS  Google Scholar 

  • Midgley DJ, Hendry P, Pinetown K, Fuentes D, Gong S, Mitchell DL, Faiz M (2010) Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the Gippsland Basin, Australia. Int J Coal Geol 82:232–239

    Article  CAS  Google Scholar 

  • Nagalakshmi T, Karthikeshwaran R, Mascarenhas JAB, Janayne Md, Bernardo N (2014) A study of clostridium tryobutyricum in carbonate reservoir for microbial enhanced oil recovery. Indian J Sci Technol 7:68–73

    Google Scholar 

  • Palmer SE (1993) Effect of biodegradation and water washing on crude oil composition. In: Engel MH, Macko SA (eds) Organic geochemistry. Plenum Press, New York, pp 511–533

    Chapter  Google Scholar 

  • Roling WFM, Head IM, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154:321–328

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Ron EZ (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52:154–162

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    Article  CAS  PubMed  Google Scholar 

  • Stetter KO, Huber R, Blochl E, Kurr M, Eden RD, Fielder M, Cash H, Vance I (1993) Hyperthermophilic archaea are thriving in deep North-Sea and Alaskan oil-reservoirs. Nature 365:743–745

    Article  Google Scholar 

  • Sunde E (1992) Method of microbial enhanced oil recovery. US Patent 5,163,510

    Google Scholar 

  • Tanner RS, Udegbunam EO, Mcinerney MJ, Knapp RM (1991) Microbially enhanced oil-recovery from carbonate reservoirs. Geomicrobiol J 9:169–195

    Article  CAS  Google Scholar 

  • Thrasher D, Puckett DA, Davies A, Beattie G, Gordon Pospisil G, Boccardo G, Vance I, Jackson S (2010) MEOR from lab to field, Proceedings - SPE Symposium on Improved Oil Recovery 2010:477–485

    Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects – part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  Google Scholar 

  • Youssef N, Simpson DR, Duncan KE, Mcinerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Applied and Environmental Microbiology 73:1239–1247

    Google Scholar 

  • Youssef N et al (2013) In situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int Biodeterior Biodegrad 81:127–132

    Article  CAS  Google Scholar 

  • Zhang F, She YH, Chai LJ, Banat IM, Zhang XT, Shu FC, Wang ZL, Yu LJ, Hou DJ (2012) Microbial diversity in long-term water-flooded oil reservoirs with different in situ temperatures in China. Sci Rep 2:760

    PubMed  PubMed Central  Google Scholar 

  • Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Pet Sci Eng 81:49–56

    Article  CAS  Google Scholar 

  • ZoBell C (1946) Bacteriological process for treatment of fluid-bearing earth formations. US Patent 2,413,278

    Google Scholar 

Download references

Acknowledgments

We wish acknowledge all members of the MEOR team at CSIRO for many years of joint research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Volk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Volk, H., Hendry, P. (2017). 3° Oil Recovery: Fundamental Approaches and Principles of Microbially Enhanced Oil Recovery. In: Lee, S. (eds) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Production of Fuels and Chemicals. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-31421-1_202-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31421-1_202-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31421-1

  • Online ISBN: 978-3-319-31421-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics