Skip to main content

The High-Throughput Sequencing Technologies Triple-W Discussion: Why Use HTS, What Is the Optimal HTS Method to Use, and Which Data Analysis Workflow to Follow

  • Chapter
  • First Online:
Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing

Abstract

In the past decade and a half, different companies began developing and constantly improving a variety of high-throughput sequencing (HTS) platforms, which delivered large volumes of genomic information, improving sequencing accuracy at a cost that is progressively lowering compared to previous technologies like Sanger sequencing, aiming the 1000$ genome milestone (with all the implications it would have for personal medicine by making affordable individual genome sequencing). Parallel to this, the necessity of efficient data analysis and handling promoted biostatistics and bioinformatics evolution, to assume the handling of those big data volumes. Currently, HTS technique approaches are a trendy way to carry out a variety of experiments that have allowed gaining insight of multiple features of biological systems, their regulation and evolution, which were inaccessible until these technologies arrived.

This book is conceived to act as source of guidance through the increasing number of HTS-related techniques, enhancing their use, by bringing up a series of guidelines/recommendations that should help researchers to choose the best planning options for their HTS experiments from the wet laboratory to the in silico interpretation, so that they are able to select the best approach for testing their hypotheses and answer biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (2014) Illumina sequencer enables $1,000 genome. Genet Eng Biotechnol News 34:18

    Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baubec T, Colombo DF, Wirbelauer C et al (2015) Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520:243–247

    Article  CAS  PubMed  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Check Hayden E (2015) Pint-sized DNA sequencer impresses first users. Nature 521:15–16

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  PubMed  Google Scholar 

  • Consortium CES (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Editorial NM (2014) Method of the Year 2013. Nat Methods 11:1

    Article  Google Scholar 

  • Eisen JA (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5:e82

    Article  PubMed  PubMed Central  Google Scholar 

  • Harris S (2002) Understanding the Bible. McGraw-Hill, New York, NY, pp 50–51

    Google Scholar 

  • Hatem A, Bozdag D, Toland AE et al (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Hestand MS, Klingenhoff A, Scherf M et al (2010) Tissue-specific transcript annotation and expression profiling with complementary next-generation sequencing technologies. Nucleic Acids Res 38:e165

    Article  PubMed  PubMed Central  Google Scholar 

  • International Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  • Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leininger S, Urich T, Schloter M et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Lister R, Mukamel EA, Nery JR et al (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905

    Article  PubMed  PubMed Central  Google Scholar 

  • Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maurano MT, Wang H, John S et al (2015) Role of DNA methylation in modulating transcription factor occupancy. Cell Rep 12:1184–1195

    Article  CAS  PubMed  Google Scholar 

  • Mohammed H, Russell IA, Stark R et al (2015) Progesterone receptor modulates ERalpha action in breast cancer. Nature 523:313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quick J, Quinlan AR, Loman NJ (2014) A reference bacterial genome dataset generated on the MinION portable single-molecule nanopore sequencer. Gigascience 3:22

    Article  PubMed  PubMed Central  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy TB, Thomas AD, Stamatis D et al (2015) The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta)genome project classification. Nucleic Acids Res 43:D1099–D1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Soro A, Guillen-Navarro M, Mira A (2014) Metatranscriptomics reveals overall active bacterial composition in caries lesions. J Oral Microbiol 6:25443

    Article  PubMed  Google Scholar 

  • Spitzer J, Hafner M, Landthaler M et al (2014) PAR-CLIP (Photoactivatable Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol 539:113–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen T, Jonas K (2012) Modified base detection with nanopore sequencing Patent WO 2013185137 A1, Dec 12, 2013

    Google Scholar 

  • Tome JM, Ozer A, Pagano JM et al (2014) Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat Methods 11:683–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Cacchiarelli D, Grimsby J et al (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453:1239–1243

    Article  CAS  PubMed  Google Scholar 

  • Wilke A, Glass EM, Bartels D et al (2013) A metagenomics portal for a democratized sequencing world. Methods Enzymol 531:487–523

    Article  CAS  PubMed  Google Scholar 

  • Wills QF, Livak KJ, Tipping AJ et al (2013) Single-cell gene expression analysis reveals genetic associations masked in whole-tissue experiments. Nat Biotechnol 31:748–752

    Article  CAS  PubMed  Google Scholar 

  • Wolna AH, Fleming AM, Burrows CJ (2014) Single-molecule detection of a guanine(C8) - thymine(N3) cross-link using ion channel recording. J Phys Org Chem 27:247–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Gunawardane L, Niazi F et al (2014) A novel RNA motif mediates the strict nuclear localization of a long noncoding RNA. Mol Cell Biol 34:2318–2329

    Article  PubMed  PubMed Central  Google Scholar 

  • Zupanic A, Meplan C, Grellscheid SN et al (2014) Detecting translational regulation by change point analysis of ribosome profiling data sets. RNA 20:1507–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to Springer for giving us the opportunity of making this HTS guideline idea a reality.

This work has been supported by The Department of Industry, Tourism, and Trade of the Government of the Autonomous Community of the Basque Country (Etortek Research Programs 2013–2015) and from the Innovation Technology Department of the Bizkaia County.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Lavín Trueba Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lavín Trueba, J.L., Aransay, A.M. (2016). The High-Throughput Sequencing Technologies Triple-W Discussion: Why Use HTS, What Is the Optimal HTS Method to Use, and Which Data Analysis Workflow to Follow. In: Aransay, A., Lavín Trueba, J. (eds) Field Guidelines for Genetic Experimental Designs in High-Throughput Sequencing. Springer, Cham. https://doi.org/10.1007/978-3-319-31350-4_1

Download citation

Publish with us

Policies and ethics