Skip to main content

Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives

  • Chapter
  • First Online:
Contributions in Mathematics and Engineering

Abstract

We derive Taylor’s theorem using a variation of constants formula for conformable fractional derivatives. This is then employed to extend some recent and classical integral inequalities to the conformable fractional calculus, including the inequalities of Steffensen, Chebyshev, Hermite–Hadamard, Ostrowski, and Grüss.

In Honor of Constantin Carathéodory

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal, R.P., Dragomir, S.S.: An application of Hayashi’s inequality for differentiable functions. Comput. Math. Appl. 32 (6), 95–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bohner, M., Matthews, T.: The Grüss inequality on time scales. Commun. Math. Anal. 3 (1), 1–8 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Bohner, M., Matthews, T.: Ostrowski inequalities on time scales. J. Inequal. Pure Appl. Math. 9 (1), Article 6, 1–8 (2008)

    Google Scholar 

  4. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  5. Gauchman, H.: Integral inequalities in q-calculus. Comput. Math. Appl. 47, 281–300 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hammad, M.A., Khalil, R.: Abel’s formula and Wronskian for conformable fractional differential equations. Int. J. Differ. Equ. Appl. 13 (3), 177–183 (2014)

    MATH  Google Scholar 

  7. Katugampola, U.: A new fractional derivative with classical properties. J. Am. Math. Soc. (2014). arXiv:1410.6535v2

    Google Scholar 

  8. Kelley, W., Peterson, A.: The Theory of Differential Equations Classical and Qualitative. Pearson Prentice Hall, Upper Saddle River (2004)

    Google Scholar 

  9. Khalil, R., Horani, M.A., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pečarić, J., Perić, I., Smoljak, K.: Generalized fractional Steffensen type inequalities. Eur. Math. J. 3 (4), 81–98 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  12. Set, E.: New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63, 1147–1154 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J.R., Zhu, C., Zhou, Y.: New generalized Hermite-Hadamard type inequalities and applications to special means J. Inequal. Appl. 2013, 325 (2013)

    Google Scholar 

  14. Williams, P.A.: Fractional calculus on time scales with Taylor’s theorem. Fract. Calc. Appl. Anal. 15 (4), 616–638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Wang, J.R.: On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals. J. Inequal. Appl. 2013, 220 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas R. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anderson, D.R. (2016). Taylor’s Formula and Integral Inequalities for Conformable Fractional Derivatives. In: Pardalos, P., Rassias, T. (eds) Contributions in Mathematics and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-31317-7_2

Download citation

Publish with us

Policies and ethics