Skip to main content

Ways to Study the Biology of Cardiomyocytes

  • Chapter
  • First Online:
Cardiomyocytes – Active Players in Cardiac Disease
  • 806 Accesses

Abstract

This chapter explains how experiments can be designed to investigate and quantify the biological function of cardiomyocytes. Cardiomyocytes are highly and terminally differentiated cells that are closely connected to each other in tissue. Isolation of cells requires disruption of cell-cell contacts without damaging these cells. This is performed by a transient depletion of extracellular calcium making reexposing of cardiomyocytes to a challenging procedure with slight methodological differences for cardiomyocytes from different species and parts of the heart. Under culturing conditions, cardiomyocytes rapidly adapt the specific conditions. The lack of mechanical load and loss of contractile activity leads to degradation of contractile units that requires specific attempts to analyze the behavior of such cells. This can be performed by mechanical load, electrical pacing, or induction of remodeling. Function of cardiomyocytes is mostly characterized by load-free cell shortening with remarkable reproducible results between cardiomyocytes from different species. Molecular aspects of cardiac hypertrophy can be analyzed by quantification of protein synthesis, protein degradation, and cell sizes. Although cardiomyocytes can be isolated and cultured from many species, the majority of researchers focused on small rodents, preferentially rats. These have a surprisingly strong comparability with other species in many aspects but not in electrophysiological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah Y, Iraqi W, Said M, Kasseckert S, Shahzad T, Erdogan A, Neuhof C, Gündüz D, Schlüter KD, Piper HM, Reusch HP, Ladilov Y (2011) Interplay between Ca2+ cycling and mitochondrial permeability transition pores promotes reperfusion-induced injury of cardiac myocytes. J Cell Mol Med 15:2478–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druik H, Jovinge S, Frisen J (2009) Evidence for cardiomyocytes renewal in humans. Science 324:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows MT (1910) The cultivation of tissues of the chick embryo outside the body. JAMA 55:2057–2058

    Article  Google Scholar 

  • Cavanaugh MW (1955) Pulsation, migration and division in dissociated chick embryo heart cells in vitro. J Exp Zool 128:573–589

    Article  Google Scholar 

  • Chorvatova A, Elzwiei F, Mateasik A, Chorvat D (2012) Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD(P)H fluorescence. J Biomed Opt 17:101505

    Article  PubMed  Google Scholar 

  • De Tombe PP, ter Keurs HE (1990) Force and velocity of sarcomere shortening in trabeculae from rat heart. Circ Res 66:1239–1254

    Article  PubMed  Google Scholar 

  • Delbridge LM, Roos KP (1997) Optical methods to evaluate the contractile function of unloaded isolated cardiac myocytes. J Mol Cell Cardiol 29:11–25

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara K, Tanaka H, Mani H, Nakagami T, Takamatsu T (2008) Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+-Ca2+ exchanger. Circ Res 103:509–518

    Article  CAS  PubMed  Google Scholar 

  • Hinrichs S, Heger J, Schreckenberg R, Wenzel S, Euler G, Arens C, Bader M, Rosenkranz S, Caglayan E, Schlüter KD (2011) Controlling cardiomyocyte length: the role of renin and PPAR-γ. Cardiovasc Res 89:344–352

    Article  CAS  PubMed  Google Scholar 

  • Horackova M, Byczko Z (1997) Differences in the structural characteristics of adult guinea pig and rat cardiomyocytes during their adaptation and maintenance in long-term cultures: confocal microscopy study. Exp Cell Res 237:158–175

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SL (1977) Culture of spontaneously contracting myocardial cells from adult rats. Cell Struct Funct 2:1–9

    Article  Google Scholar 

  • Jacobson SL, Piper HM (1986) Cell cultures of adult cardiomyocytes as models of the myocardium. J Mol Cell Cardiol 18:661–678

    Article  CAS  PubMed  Google Scholar 

  • Kent RL, Mann DL, Urabe Y, Hisano R, Hewett KW, Loughnane M, Cooper G 4th (1989) Contractile function of isolated feline cardiomyocytes in response to viscous loading. Am J Physiol 257:H1717–H1727

    CAS  PubMed  Google Scholar 

  • Kono T (1969) Roles of collagenase and other proteolytic enzymes in the dispersal of animal tissues. Biochim Biophys Acta 178:397–400

    Article  CAS  PubMed  Google Scholar 

  • Kuramochi Y, Lim CC, Guo X, Colucci WS, Liao R, Sawyer DB (2003) Myocyte contractile activity modulates norepinephrine cytotoxicity and survival effects of neuregulin-1β. Am J Physiol Cell Physiol 286:C222–C229

    Article  PubMed  Google Scholar 

  • Ladilov Y, Efe Ö, Schäfer C, Rother B, Kasseckert S, Abdallah Y, Meuter K, Schlüter KD, Piper HM (2003) Reoxygenation-induced rigor-type contracture. J Mol Cell Cardiol 35:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Landgraf G, Gellerich FN, Wussling MH (2004) Inhibitors of SERCA and mitochondrial Ca-uniporter decrease velocity of calcium waves in rat cardiomyocytes. Mol Cell Biochem 256–257:379–386

    Article  PubMed  Google Scholar 

  • Liu SJ (2013) Characterization of functional capacity of adult ventricular myocytes in long-term culture. Int J Cardiol 168:1923–1936

    Article  PubMed  Google Scholar 

  • Ljubojevic S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, Winkler C, Pritz E, Mittler T, Schmidt A, Sereinigg M, Wakula P, Zissimopoulos S, Bisping E, Post H, Marsche G, Bossuyt J, Bers DM, Kockskämper J, Pieske B (2014) Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation 130:244–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JR, Jovanovic A, Terzic A (1995) Spontaneous calcium waves without contraction in cardiac myocytes. Biochem Biophys Res Commun 214:781–787

    Article  CAS  PubMed  Google Scholar 

  • LoRusso S, Rhee D, Sanger JM, Sanger JW (1997) Premyofibrils in spreading adult cardiomyocytes in tissue culture: evidence for reexpression of the embryonic program for myofibrillogenesis in adult cells. Cell Motil Cytoskeleton 37:183–198

    Article  CAS  PubMed  Google Scholar 

  • Louch WE, Bito V, Heinzel FR, Macianskiene R, Vanhaecke J, Flameng W, Mubagwa K, Sipido KR (2004) Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res 62:63–73

    Article  CAS  PubMed  Google Scholar 

  • Louch WE, Seehan KA, Wolska BM (2011) Methods in cardiomyocyte isolation, culture, and gene transfer. J Mol Cell Cardiol 51:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milani-Nejad N, Janssen PM (2014) Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther 141:235–249

    Article  CAS  PubMed  Google Scholar 

  • Millar BC, Schlüter KD, Zhou XJ, McDermott BJ, Piper HM (1994) Neuropeptide Y stimulates hypertrophy of adult ventricular cardiomyocytes. Am J Physiol 266:C1271–C1277

    CAS  PubMed  Google Scholar 

  • Muir AR (1965) Further observations of the cellular structure of cardiac muscle. J Anat 99:27–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posser BL, Ward CW, Lederer WJ (2011) X-ROS signaling, rapid mechano-chemo transduction in heart. Science 333:1440–1445

    Article  Google Scholar 

  • Powell T, Twist VW (1976) A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and a tolerance to calcium. Biochem Biophys Res Commun 72:327–333

    Article  CAS  PubMed  Google Scholar 

  • Sabri A, Pak E, Alcott SA, Wilson BA, Steinberg SF (2000) Coupling function of endogenous alpha(1)- and beta-adrenergic receptors in mouse cardiomyocytes. Circ Res 86:1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Sakai S, Tokimasa T, Nohara M, Koga Y, Akasu T, Toshima H (1989) Electrophysiological properties of cultured dog myocytes obtained by endomyocardial biopsy. Circ Res 64:203–212

    Article  CAS  PubMed  Google Scholar 

  • Schäfer M, Pönicke K, Heinroth-Hoffmann I, Brodde OE, Piper HM, Schlüter KD (2001) Beta-Adrenoceptor stimulation attenuates the hypertrophic effect of alpha-adrenoceptor stimulation in adult rat ventricular cardiomyocytes. J Am Coll Cardiol 37:300–307

    Article  PubMed  Google Scholar 

  • Schlüter KD, Piper HM (1992) Trophic effects of catecholamines and parathyroid hormone on adult ventricular cardiomyocytes. Am J Physiol 263:H1739–H1746

    PubMed  Google Scholar 

  • Schlüter KD, Piper HM (2005) Isolation and culture of adult ventricular cardiomyocytes. In: Dhein S, Mohr FW, Delmar M (eds) Practical methods in cardiovascular research. Springer, Berlin/Heidelberg/New York, pp 557–567

    Chapter  Google Scholar 

  • Schlüter KD, Schreiber D (2005) Adult ventricular cardiomyocytes: isolation and culture. Methods Mol Biol 290:305–314

    PubMed  Google Scholar 

  • Schlüter KD, Jakob G, Ruiz-Meana M, Garcia-Doardo D, Piper HM (1996) Protection of reoxygenated cardiomyocytes against osmotic fragility by nitric oxide donors. Am J Physiol 271:H428–H434

    PubMed  Google Scholar 

  • Schreckenberg R, Dyukova E, Sitdikova G, Abdallah Y, Schlüter KD (2014) Mechanisms by which calcium receptor stimulation modifies electromechanical coupling in isolated ventricular cardiomyocytes. Pflugers Arch. doi:10.1007/s00424-014-1498-y

    PubMed  Google Scholar 

  • Schreckenberg R, Rebelo M, Deten A, Weber M, Rohrbach S, Pipicz M, Csonka C, Ferdinandy P, Schulz R, Schlüter KD (2015) Specific mechanisms underlying right heart failure: the missing upregulation of superoxide dismutase-2 and its decisive role in antioxidative defense. Antioxid Redox Signal. doi:10.1089/ars.2014.6139

    PubMed  Google Scholar 

  • Shyu KG, Chen JJ, Shih NL, Chang H, Wang DL, Lien WP, Liew CC (1995) Angiotensinogen gene expression is induced by cyclical mechanical stretch in cultured rat cardiomyocytes. Biochem Biophys Res Commun 211:241–248

    Article  CAS  PubMed  Google Scholar 

  • Windisch H, Ahammer H, Schaffer P, Müller W, Platzer D (1995) Optical multisite monitoring of cell excitation phenomena in isolated cardiomyocytes. Pflugers Arch 430:508–518

    Article  CAS  PubMed  Google Scholar 

  • Zacchigna S, Zentilin L, Giacca M (2014) Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ Res 114:1827–1846

    Article  CAS  PubMed  Google Scholar 

  • Zobel C, Cho HC, Ngyuen TT, Pekhletski R, Diaz RJ, Wilson GJ, Backx PH (2003) Molecular dissection of the inward rectifier potassium current (IK1) in rabbit cardiomyocytes: evidence for heteromeric co-assembly of Kir2.1 and Kir2.2. J Physiol 550:365–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlüter, KD. (2016). Ways to Study the Biology of Cardiomyocytes. In: Schlüter, KD. (eds) Cardiomyocytes – Active Players in Cardiac Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-31251-4_1

Download citation

Publish with us

Policies and ethics