Skip to main content

Investigational Treatments for Status Epileptics

  • Chapter
  • First Online:
Continuous EEG Monitoring

Abstract

The armamentarium for treatment of seizures in the intensive care unit is extensive, but some seizures and status epilepticus (SE) remain refractory to many standard treatments, and often, an individual patient will respond more or less well than other patients do to a given treatment. Also, each treatment, whether pharmacologic or invasive, carries its own particular side effects or complications. New additional treatments are necessary in many cases. This chapter reviews some of those new treatments, particularly those currently under formal investigation. Immunosuppression for autoimmune encephalopathy causes of status epilepticus and focal resection for refractory cases of focal status epilepticus are becoming relatively common practices and are covered elsewhere in this book. This chapter focuses on antiseizure medications in clinical trials, the somewhat more remote prospect of gene therapy, and transcranial magnetic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kokate TG, Svensson BE, Rogawski MA. Anticonvulsant activity of neurosteroids: correlation with aid-evoked chloride current potentiation. J Pharmacol Exp Ther. 1994;270:1223–9.

    CAS  PubMed  Google Scholar 

  2. Kokate TG, Cohen AL, Karp E, Rogawski MA. Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology. 1996;35:1049–56.

    Article  CAS  PubMed  Google Scholar 

  3. Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25:7724–33.

    Article  CAS  PubMed  Google Scholar 

  4. Kapur J, Macdonald RL. Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci. 1997;17:7532–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mazarati AM, Baldwin RA, Sankar R, Wasterlain CG. Time-dependent decrease in the effectiveness of antiepileptic drugs during the course of self-sustaining status epilepticus. Brain Res. 1998;814:179–85.

    Article  CAS  PubMed  Google Scholar 

  6. Treiman DM, Meyers PD, Walton NY, Collins JF, Colling C, Rowan AJ, et al. A comparison of four treatments for generalized convulsive status epilepticus. Veterans Affairs Status Epilepticus Cooperative Study Group. N Engl J Med. 1998;339:792–8.

    Article  CAS  PubMed  Google Scholar 

  7. Prybylowski K, Fu Z, Losi G, Hawkins LM, Luo J, Chang K, et al. Relationship between availability of NMDA receptor subunits and their expression at the synapse. J Neurosci. 2002;22:8902–10.

    CAS  PubMed  Google Scholar 

  8. Wasterlain CG, Liu H, Naylor DE, Thompson KW, Suchomelova L, Niquet J, et al. Molecular basis of self-sustaining seizures and pharmacoresistance during status epilepticus: The receptor trafficking hypothesis revisited. Epilepsia. 2009;50 Suppl 1:16–8.

    Article  PubMed  Google Scholar 

  9. Brickley SG, Mody I. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron. 2012;73:23–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hosie AM, Wilkins ME, da Silva HMA, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature. 2006;444:486–9.

    Article  CAS  PubMed  Google Scholar 

  11. Hosie AM, Wilkins ME, Smart TG. Neurosteroid binding sites on GABAA receptors. Pharmacol Ther. 2007;116:7–19.

    Article  CAS  PubMed  Google Scholar 

  12. Reddy D, Rogawski MA. Neurosteroids—endogenous regulators of seizure susceptibility and role in the treatment of epilepsy. Jasper’s Basic Mech Epilepsies. 2012;51:1–23.

    Google Scholar 

  13. Devaud LL, Purdy RH, Finn DA, Morrow AL. Sensitization of gamma-aminobutyric acid A receptors to neuroactive steroids in rats during ethanol withdrawal. J Pharmacol Exp Ther. 1996;278:510–7.

    CAS  PubMed  Google Scholar 

  14. Tsuda M, Suzuki T, Misawa M. Modulation of the decrease in the seizure threshold of pentylenetetrazole in diazepam withdrawn mice by the neurosteroid 5αpregnan-3α,21-diol-20-one (alloTHDOC). Addict Biol. 1997;2:455–60.

    Article  CAS  PubMed  Google Scholar 

  15. Reddy DS, Rogawski MA. Enhanced anticonvulsant activity of neuroactive steroids in a rat model of catamenial epilepsy. Epilepsia. 2001;42:337–44.

    Article  CAS  PubMed  Google Scholar 

  16. Kokate TG, Yamaguchi S, Pannell LK, Rajamani U, Carroll DM, Grossman AB, et al. Lack of anticonvulsant tolerance to the neuroactive steroid pregnanolone in mice. J Pharmacol Exp Ther. 1998;287:553–8.

    CAS  PubMed  Google Scholar 

  17. Reddy DS, Rogawski MA. Enhanced anticonvulsant activity of ganaxolone after neurosteroid withdrawal in a rat model of catamenial epilepsy. J Pharmacol Exp Ther. 2000;294:909–15.

    CAS  PubMed  Google Scholar 

  18. Corpéchot C, Young J, Calvel M, Wehrey C, Veltz JN, Touyer G, et al. Neurosteroids: 3α-hydroxy-5α-pregnan-20-one and its precursors in the brain, plasma, and steroidogenic glands of male and female rats. Endocrinology. 1993;133:1003–9.

    PubMed  Google Scholar 

  19. Belelli D, Bolger MB, Gee KW. Anticonvulsant profile of the progesterone metabolite 5 alpha-pregnan-3 alpha-ol-20-one. Eur J Pharmacol. 1989;166:325–9.

    Article  CAS  PubMed  Google Scholar 

  20. Frye CA, Bayon LE. Prenatal stress reduces the effectiveness of the neurosteroid 3 alpha, 5 alpha-THP to block kainic-acid-induced seizures. Dev Psychobiol. 1999;34:227–34.

    Article  CAS  PubMed  Google Scholar 

  21. Lossin C, Shahangian SS, Rogawski MA. Allopregnanolone treatment in a rat pediatric status epilepticus model: comparison with diazepam. Epilepsy Curr. 2013;13(3):220.

    Google Scholar 

  22. Holmes GL, Weber DA, Kloczko N, Zimmerman AW. Relationship of endocrine function to inhibition of kindling. Brain Res. 1984;318:55–9.

    Article  CAS  PubMed  Google Scholar 

  23. Edwards HE, Burnham WM, MacLusky NJ. Testosterone and its metabolites affect after discharge thresholds and the development of amygdala kindled seizures. Brain Res. 1999;838:151–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lonsdale D, Burnham WM. The anticonvulsant effects of allopregnanolone against amygdala-kindled seizures in female rats. Neurosci Lett. 2007;411:147–51.

    Article  CAS  PubMed  Google Scholar 

  25. Czlonkowska AI, Krzcik P, Sienkiewicz-Jarosz H, Siemitkowski M, Szyndler J, Bidziński A, et al. The effects of neurosteroids on picrotoxin-, bicuculline- and NMDA-induced seizures, and a hypnotic effect of ethanol. Pharmacol Biochem Behav. 2000;67:345–53.

    Article  CAS  PubMed  Google Scholar 

  26. Rogawski MA, Reddy DS. Neurosteroids: endogenous modulators of seizure susceptibility. In, Epilepsy: Rho JM, Sankar R and Cavazos J, eds. Scientific Foundations of Clinical Practice, Marcel Dekker, New York; 2004:319–55.

    Google Scholar 

  27. Pieribone VA, Tsai J, Soufflet C, Rey E, Shaw K, Giller E, et al. Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy. Epilepsia. 2007;48:1870–4.

    Article  CAS  PubMed  Google Scholar 

  28. Kerrigan JF, Shields WD, Nelson TY, Bluestone DL, Dodson WE, Bourgeois BFD, et al. Ganaxolone for treating intractable infantile spasms: a multicenter, open-label, add-on trial. Epilepsy Res. 2000;42:133–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (Eilat X). Epilepsy Res. 2010;92:89–124.

    Article  PubMed  Google Scholar 

  30. Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the Eleventh Eilat Conference (Eilat XI). Epilepsy Res. 2013;103:2–30.

    Article  PubMed  Google Scholar 

  31. Vaitkevicius H, Ng M, Moura L, Rosenthal E, Westover MB, Rogawski MA, et al. Successful allopregnanolone treatment of new onset refractory status epilepticus (NORSE) syndrome: first in man experience. Epilepsia. 2013;54:106–24.

    Article  Google Scholar 

  32. Broomall E, Natale JE, Grimason M, Goldstein J, Smith CM, Chang C, et al. Pediatric super-refractory status epilepticus treated with allopregnanolone. Ann Neurol. 2014;76:911–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reddy K, Reife R, Cole AJ. SGE-102: a novel therapy for refractory status epilepticus. Epilepsia. 2013;54:81–3.

    Article  CAS  PubMed  Google Scholar 

  34. Neville BGR, Chin RF, Scott RC. Clinical trial design in status epilepticus: problems and solutions. Epilepsia. 2007;48:56–8.

    Article  PubMed  Google Scholar 

  35. Shorvon S, Ferlisi M. The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain. 2011;134:2802–18.

    Article  PubMed  Google Scholar 

  36. Husain AM. Treatment of Recurrent Electrographic Nonconvulsive Seizures (TRENdS) study. Epilepsia. 2013;54 suppl 6:84–8.

    Article  CAS  PubMed  Google Scholar 

  37. Shorvon S. Clinical trials in acute repetitive seizures and status epilepticus. Epileptic Disord. 2012;14:138–47.

    PubMed  Google Scholar 

  38. Sabers A, Wolf P, Møller A, Rysgaard K, Ben-Menachem E. A prospective, randomized, multicenter trial for the treatment of refractory status epilepticus; experiences from evaluating the effect of the novel drug candidate, NS1209. Epilepsy Res. 2013;106:292–5.

    Article  PubMed  Google Scholar 

  39. Pitkänen A, Mathiesen C, Rønn LCB, Møller A, Nissinen J. Effect of novel AMPA antagonist, NS1209, on status epilepticus. An experimental study in rat. Epilepsy Res. 2007;74:45–54.

    Article  PubMed  Google Scholar 

  40. Rossetti AO, Milligan TA, Vulliémoz S, Michaelides C, Bertschi M, Lee JW. A randomized trial for the treatment of refractory status epilepticus. Neurocrit Care. 2011;14:4–10.

    Article  CAS  PubMed  Google Scholar 

  41. Bleck T, Cock H, Chamberlain J, Cloyd J, Connor J, Elm J, et al. The established status epilepticus trial 2013. Epilepsia. 2013;54 suppl 6:89–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillard M, Fuks B, Leclercq K, Matagne A. Binding characteristics of brivaracetam, a selective, high affinity SV2A ligand in rat, mouse and human brain: relationship to anti-convulsant properties. Eur J Pharmacol. 2011;664:36–44.

    Article  CAS  PubMed  Google Scholar 

  43. Zona C, Niespodziany I, Marchetti C, Klitgaard H, Bernardi G, Margineanu DG. Levetiracetam does not modulate neuronal voltage-gated Na + and T-type Ca2+ currents. Seizure. 2001;10:279–86.

    Article  CAS  PubMed  Google Scholar 

  44. Zona C, Pieri M, Carunchio I, Curcio L, Klitgaard H, Margineanu DG. Brivaracetam (UCB 34714) inhibits Na + current in rat cortical neurons in culture. Epilepsy Res. 2010;88:46–54.

    Article  CAS  PubMed  Google Scholar 

  45. Matagne A, Margineanu D-G, Kenda B, Michel P, Klitgaard H. Anti-convulsive and anti-epileptic properties of brivaracetam (ucb 34714), a high-affinity ligand for the synaptic vesicle protein, SV2A. Br J Pharmacol. 2008;154:1662–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wasterlain CG, Suchomelova L, Matagne A, Klitgaard H, Niquet J, Baldwin RA. Short-term and long-term effects of brivaracetam in an animal model of status. Epilepsia. 2009;50:13.

    Article  Google Scholar 

  47. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 – an update. J Gene Med. 2013;15:65–77.

    Article  CAS  PubMed  Google Scholar 

  48. Simonato M, Bennett J, Boulis NM, Castro MG, Fink DJ, Goins WF, et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol. 2013;9:277–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kells AP, Eberling J, Su X, Pivirotto P, Bringas J, Hadaczek P, et al. Regeneration of the MPTP-lesioned dopaminergic system after convection-enhanced delivery of AAV2-GDNF. J Neurosci. 2010;30:9567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marks WJ, Bartus RT, Siffert J, Davis CS, Lozano A, Boulis N, et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2010;9:1164–72.

    Article  CAS  PubMed  Google Scholar 

  51. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10:309–19.

    Article  CAS  PubMed  Google Scholar 

  52. Bartus RT, Baumann TL, Siffert J, Herzog CD, Alterman R, Boulis N, et al. Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology. 2013;80:1698–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Walker MC, Schorge S, Kullmann DM, Wykes RC, Heeroma JH, Mantoan L. Gene therapy in status epilepticus. Epilepsia. 2013;54 suppl 6:43–5.

    Article  CAS  PubMed  Google Scholar 

  54. Weinberg MS, McCown TJ. Current prospects and challenges for epilepsy gene therapy. Exp Neurol. 2013;244:27–35.

    Article  CAS  PubMed  Google Scholar 

  55. Raol YH, Lund IV, Bandyopadhyay S, Zhang G, Roberts DS, Wolfe JH, et al. Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci. 2006;26:11342–6.

    Article  CAS  PubMed  Google Scholar 

  56. Woldbye DP, Larsen PJ, Mikkelsen JD, Klemp K, Madsen TM, Bolwig TG. Powerful inhibition of kainic acid seizures by neuropeptide Y via Y5-like receptors. Nat Med. 1997;3:761–4.

    Article  CAS  PubMed  Google Scholar 

  57. Woldbye DPD, Ängehagen M, Gøtzsche CR, Elbrønd-Bek H, Sørensen AT, Christiansen SH, et al. Adeno-associated viral vector-induced overexpression of neuropeptide y Y2 receptors in the hippocampus suppresses seizures. Brain. 2010;133:2778–88.

    Article  PubMed  Google Scholar 

  58. Schinder AF, Poo M. The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 2000;23:639–45.

    Article  CAS  PubMed  Google Scholar 

  59. Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against ischemic brain injury. J Cereb Blood Flow Metab. 2000;20:1393–408.

    Article  CAS  PubMed  Google Scholar 

  60. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130–2.

    Article  CAS  PubMed  Google Scholar 

  61. Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 1994;266:1062–4.

    Article  CAS  PubMed  Google Scholar 

  62. Arenas E, Trupp M, Akerud P, Ibanez CF. GDNF prevents degeneration and promotes the phenotype of brain noradrenergic neurons in vivo. Neuron. 1995;15:1465–73.

    Article  CAS  PubMed  Google Scholar 

  63. Harvey BK, Chang CF, Chiang YH, Bowers WJ, Morales M, Hoffer BJ, et al. HSV amplicon delivery of glial cell line-derived neurotrophic factor is neuroprotective against ischemic injury. Exp Neurol. 2003;183:47–55.

    Article  CAS  PubMed  Google Scholar 

  64. Kanter-Schlifke I, Georgievska B, Kirik D, Kokaia M. Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther. 2007;15:1106–13.

    Article  CAS  PubMed  Google Scholar 

  65. Paradiso B, Marconi P, Zucchini S, Berto E, Binaschi A, Bozac A, et al. Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci U S A. 2009;106:7191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paradiso B, Zucchini S, Su T, Bovolenta R, Berto E, Marconi P, et al. Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia. 2011;52:572–8.

    Article  PubMed  Google Scholar 

  67. Bovolenta R, Zucchini S, Paradiso B, Rodi D, Merigo F, Navarro Mora G, et al. Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflammation. 2010;7:81.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci. 2005;8:1263–8.

    Article  CAS  PubMed  Google Scholar 

  69. Deisseroth K. Optogenetics. Nat Methods. 2011;8:26–9.

    Article  CAS  PubMed  Google Scholar 

  70. Yang X, Rode DL, Peterka DS, Yuste R, Rothman SM. Optical control of focal epilepsy in vivo with caged gamma-aminobutyric acid. Ann Neurol. 2012;71:68–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, Deisseroth K, et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med. 2012;4(161):161ra152.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Simonato M. Epilepsy & behavior gene therapy for epilepsy. Epilepsy Behav. 2013;38:125–30.

    Article  PubMed  Google Scholar 

  73. Kullmann DM, Schorge S, Walker MC, Wykes RC. Gene therapy in epilepsy-is it time for clinical trials? Nat Rev Neurol. 2014;10:300–4.

    Article  CAS  PubMed  Google Scholar 

  74. Penfield W, Jasper HH. Epilepsy and the functional anatomy of the human brain. In: Electrocorticography. Boston: Little, Brown; 1954. p. 692–738.

    Google Scholar 

  75. Sun FT, Morrell MJ. Closed-loop neurostimulation: the clinical experience. Neurotherapeutics. 2014;11:553–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bergey GK. Neurostimulation in the treatment of epilepsy. Exp Neurol. 2013;244:87–95.

    Article  PubMed  Google Scholar 

  77. Johnston MV. Developmental aspects of epileptogenesis. Epilepsia. 1996;37 Suppl 1:S2–9.

    Article  PubMed  Google Scholar 

  78. Lowenstein DH. Recent advances related to basic mechanisms of epileptogenesis. Epilepsy Res Suppl. 1996;11:45–60.

    CAS  PubMed  Google Scholar 

  79. Fregni F, Pascual-Leone A. Technology insight: noninvasive brain stimulation in neurology – perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3:383–93.

    Article  PubMed  Google Scholar 

  80. Pascual-Leone A, Valls-Solé J, Wassermann EM, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain. 1994;117(Pt 4):847–58.

    Article  PubMed  Google Scholar 

  81. Maeda F, Gangitano M, Thall M, Pascual-Leone A. Inter- and intra-individual variability of paired-pulse curves with transcranial magnetic stimulation (TMS). Clin Neurophysiol. 2002;113(3):376–82.

    Article  PubMed  Google Scholar 

  82. Chen R-S, Claasen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology. 1997;48:1398–403.

    Article  CAS  PubMed  Google Scholar 

  83. Theodore WH, Hunter K, Chen R, Vega-Bermudez F, Boroojerdi B, Reeves-Tyer P, et al. Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology. 2002;59:560–2.

    Article  CAS  PubMed  Google Scholar 

  84. Fregni F, Otachi PTM, Do Valle A, Boggio PS, Thut G, Rigonatti SP, et al. A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol. 2006;60(4):447–55.

    Article  PubMed  Google Scholar 

  85. Sun W, Mao W, Meng X, Wang D, Qiao L, Tao W, et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012;53:1782–9.

    Article  PubMed  Google Scholar 

  86. Cantello R, Rossi S, Varrasi C, Ulivelli M, Civardi C, Bartalini S, et al. Slow repetitive TMS for drug-resistant epilepsy: clinical and EEG findings of a placebo-controlled trial. Epilepsia. 2007;48:366–74.

    Article  PubMed  Google Scholar 

  87. Rotenberg A, Bae EH, Muller PA, Riviello JJ, Bourgeois BF, Blum AS, et al. In-session seizures during low-frequency repetitive transcranial magnetic stimulation in patients with epilepsy. Epilepsy Behav. 2009;16:353–5.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Thordstein M, Constantinescu R. Possibly lifesaving, noninvasive, EEG-guided neuromodulation in anesthesia-refractory partial status epilepticus. Epilepsy Behav. 2012;25:468–72.

    Article  PubMed  Google Scholar 

  89. Liu A, Pang T, Herman S, Pascual-Leone A, Rotenberg A. Transcranial magnetic stimulation for refractory focal status epilepticus in the intensive care unit. Seizure. 2013;22:893–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. VanHaerents S, Herman ST, Pang T, Pascual-Leone A, Shafi MM. Repetitive transcranial magnetic stimulation; a cost-effective and beneficial treatment option for refractory focal seizures. Clin Neurophysiol. 2015;126:1840–2.

    Article  PubMed  Google Scholar 

  91. VanHaerents S, Herman S, Pang T, Pascual-Leone A, Shafi M. Repetitive transcranial magnetic stimulation for refractory focal status epilepticus (abs). Presented at the American Epilepsy Society meeting. 6 Dec 2014. Seattle, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Drislane MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haque, A., VanHaerents, S.A., Drislane, F.W. (2017). Investigational Treatments for Status Epileptics. In: Husain, A., Sinha, S. (eds) Continuous EEG Monitoring. Springer, Cham. https://doi.org/10.1007/978-3-319-31230-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31230-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31228-6

  • Online ISBN: 978-3-319-31230-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics