Skip to main content

Folate and Epigenetics: Colorectal Cancer Risk and Detection

  • Living reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics

Abstract

Colorectal cancer (CRC) is the fourth leading cause of cancer deaths worldwide. Initiation and development of colorectal tumors result from the accumulation of genetic and epigenetic alterations in colonic epithelial cells, causing their ultimate transformation into malignant adenocarcinomas. Increasing evidence points toward diet as a major environmental contributor to CRC risk. Several studies have reported that adequate folate intake may confer a protective effect for CRC risk. However, the increase in folate intake in many populations has led to some concerns about potential deleterious effects with respect to tumor growth, but thus far there have been no consistent reports of increased CRC risk due to folate supplementation. Nonetheless, animal studies have suggested a modulatory effect of folate intake depending on the timing of carcinogenesis. Genetic polymorphisms in folate one-carbon metabolism can also influence CRC risk. In addition to genetic variation, epigenetic changes, including alterations in DNA methylation, have been extensively studied in CRC and shown to occur at early stages of tumorigenesis. Consequently, DNA methylation changes could be potential biomarkers for CRC and may be useful for early diagnosis, personalized therapy, or prognosis. Some promising blood-based epigenetic biomarkers have been reported, but additional investigation is required for improvement of sensitivity and specificity.

Nancy Lévesque and Daniel Leclerc contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BHMT1:

Betaine homocysteine S-methyltransferase

BMI:

Body mass index

CIMP:

CpG island methylator phenotype

CRC:

Colorectal cancer

DMG:

Dimethylglycine

DMH:

Dimethylhydrazine

dTMP:

Deoxythymidine monophosphate

dUMP:

Deoxyuridine monophosphate

FAP:

Familial adenomatous polyposis

gFOBT:

Guaiac-based fecal occult blood test

HNPCC:

Hereditary nonpolyposis colorectal cancer

iFOBT:

Immunological-based fecal occult blood test

MAT1A:

Methionine adenosyltransferase 1A

MTHFD1:

Methylenetetrahydrofolate dehydrogenase-cyclohydrolase-formyltetrahydrofolate synthetase 1

MTHFR:

Methylenetetrahydrofolate reductase

MTR:

5-Methyltetrahydrofolate-homocysteine methyltransferase

MTRR:

5-Methyltetrahydrofolate-homocysteine methyltransferase reductase

SAH:

S-Adenosylhomocysteine

SAM:

S-Adenosylmethionine

SHMT1:

Serine hydroxymethyltransferase 1

THF:

Tetrahydrofolate

TYMS:

Thymidylate synthetase

References

  • Belshaw NJ, Elliott GO, Foxall RJ et al (2008) Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer 99:136–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canadian Cancer Society Staging. In: Colorectal cancer. http://www.cancer.ca/en/cancer-information/cancer-type/colorectal/staging. Accessed 8 June 2017

  • Cesaroni M, Powell J, Sapienza C (2014) Validation of methylation biomarkers that distinguish normal colon mucosa of cancer patients from normal colon mucosa of patients without cancer. Cancer Prev Res (Phila) 7:717–726

    Article  CAS  Google Scholar 

  • Chen WD, Han ZJ, Skoletsky J et al (2005) Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst 97:1124–1132

    Article  CAS  PubMed  Google Scholar 

  • Church TR, Wandell M, Lofton-Day C et al (2014) Prospective evaluation of methylated SEPT9 in plasma for detection of asymptomatic colorectal cancer. Gut 63:317–125

    Article  CAS  PubMed  Google Scholar 

  • Cravo ML, Mason JB, Dayal Y et al (1992) Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer Res 52:5002–5006

    CAS  PubMed  Google Scholar 

  • Cui H, Cruz-Correa M, Giardiello FM et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1735

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Zhou DL, Jiang X et al (2013) Methionine synthase A2756G polymorphism and risk of colorectal adenoma and cancer: evidence based on 27 studies. PLoS One 8:e60508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Engeland M, Weijenberg MP, Roemen GM et al (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 63:3133–3137

    PubMed  Google Scholar 

  • Farias N, Ho N, Butler S et al (2015) The effects of folic acid on global DNA methylation and colonosphere formation in colon cancer cell lines. J Nutr Biochem 26:818–826

    Article  CAS  PubMed  Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983a) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983b) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54

    Article  CAS  PubMed  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R et al (2013) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:359–386

    Article  Google Scholar 

  • Fife J, Raniga S, Hider PN et al (2011) Folic acid supplementation and colorectal cancer risk: a meta-analysis. Color Dis 13:132–137

    Article  CAS  Google Scholar 

  • Figueiredo JC, Mott LA, Giovannucci E et al (2011) Folic acid and prevention of colorectal adenomas: a combined analysis of randomized clinical trials. Int J Cancer 129:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo JC, Levine AJ, Crott JW et al (2013) Folate-genetics and colorectal neoplasia: what we know and need to know next. Mol Nutr Food Res 57:607–627

    Article  CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  CAS  PubMed  Google Scholar 

  • Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  • Gibson TM, Weinstein SJ, Pfeiffer RM et al (2011) Pre- and postfortification intake of folate and risk of colorectal cancer in a large prospective cohort study in the United States. Am J Clin Nutr 94:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady WM, Pritchard CC (2014) Molecular alterations and biomarkers in colorectal cancer. Toxicol Pathol 42:124–139

    Article  CAS  PubMed  Google Scholar 

  • Grutzmann R, Molnar B, Pilarsky C et al (2008) Sensitive detection of colorectal cancer in peripheral blood by septin 9 DNA methylation assay. PLoS One 3:e3759

    Article  PubMed  PubMed Central  Google Scholar 

  • Gylling B, Van Guelpen B, Schneede J et al (2014) Low folate levels are associated with reduced risk of colorectal cancer in a population with low folate status. Cancer Epidemiol Biomark Prev 23:2136–2144

    Article  CAS  Google Scholar 

  • Haenszel W, Kurihara M (1968) Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst 40:43–68

    CAS  PubMed  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Han S, Li Y et al (2007) Different roles of MTHFR C677T and A1298C polymorphisms in colorectal adenoma and colorectal cancer: a meta-analysis. J Hum Genet 52:73–85

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B et al (2009) Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itzkowitz S, Brand R, Jandorf L et al (2008) A simplified, noninvasive stool DNA test for colorectal cancer detection. Am J Gastroenterol 103:2862–7280

    Article  PubMed  Google Scholar 

  • Jin P, Kang Q, Wang X et al (2015) Performance of a second-generation methylated SEPT9 test in detecting colorectal neoplasm. J Gastroenterol Hepatol 30:830–833

    Article  CAS  PubMed  Google Scholar 

  • Johnson DA, Barclay RL, Mergener K et al (2014) Plasma Septin9 versus fecal immunochemical testing for colorectal cancer screening: a prospective multicenter study. PLoS One 9:e98238

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamimae S, Yamamoto E, Yamano HO et al (2011) Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev Res (Phila) 4:674–483

    Article  CAS  Google Scholar 

  • Kato I, Dnistrian AM, Schwartz M et al (1999) Serum folate, homocysteine and colorectal cancer risk in women: a nested case-control study. Br J Cancer 79:1917–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy DA, Stern SJ, Moretti M et al (2011) Folate intake and the risk of colorectal cancer: a systematic review and meta-analysis. Cancer Epidemiol 35:2–10

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DA, Stern SJ, Matok I et al (2012) Folate Intake, MTHFR Polymorphisms, and the risk of colorectal cancer: a systematic review and meta-analysis. J Cancer Epidemiol 2012:952508

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YI, Pogribny IP, Salomon RN et al (1996) Exon-specific DNA hypomethylation of the p53 gene of rat colon induced by dimethylhydrazine. Modulation by dietary folate. Am J Pathol 149:1129–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kisiel JB, Yab TC, Taylor WR et al (2014) Stool methylated DNA markers decrease following colorectal cancer resection–implications for surveillance. Dig Dis Sci 59:1764–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knock E, Deng L, Wu Q et al (2006) Low dietary folate initiates intestinal tumors in mice, with altered expression of G2-M checkpoint regulators polo-like kinase 1 and cell division cycle 25c. Cancer Res 66:10349–10356

    Article  CAS  PubMed  Google Scholar 

  • Knock E, Deng L, Wu Q et al (2008) Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate. J Nutr 138:653–658

    CAS  PubMed  Google Scholar 

  • Koza RA, Nikonova L, Hogan J et al (2006) Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2:e81

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrance AK, Deng L, Rozen R (2009) Methylenetetrahydrofolate reductase deficiency and low dietary folate reduce tumorigenesis in Apc min/+ mice. Gut 58:805–811

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D, Cao Y, Deng L et al (2013a) Differential gene expression and methylation in the retinoid/PPARA pathway and of tumor suppressors may modify intestinal tumorigenesis induced by low folate in mice. Mol Nutr Food Res 57:686–697

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D, Levesque N, Cao Y et al (2013b) Genes with aberrant expression in murine preneoplastic intestine show epigenetic and expression changes in normal mucosa of colon cancer patients. Cancer Prev Res (Phila) 6:1171–1181

    Article  CAS  Google Scholar 

  • Leclerc D, Dejgaard K, Mazur A et al (2014) Quantitative proteomics reveals differentially expressed proteins in murine preneoplastic intestine in a model of intestinal tumorigenesis induced by low dietary folate and MTHFR deficiency. Proteomics 14:2558–2565

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D, Pham D, Lévesque N et al (2017) Oncogenic role of PDK4 in human colon cancer cells. Br J Cancer 116:930–936

    Article  CAS  PubMed  Google Scholar 

  • Lofton-Day C, Model F, Devos T et al (2008) DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 54:414–423

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Stampfer MJ, Giovannucci E et al (1997) Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res 57:1098–1102

    CAS  PubMed  Google Scholar 

  • Mayo Clinic, Litin S (eds) (2009) Mayo clinic family health book, 4th edn. Time Inc Home Entertainment, New York

    Google Scholar 

  • McGlynn AP, Wasson GR, O’Reilly SL et al (2013) Low colonocyte folate is associated with uracil misincorporation and global DNA hypomethylation in human colorectum. J Nutr 143:27–33

    Article  CAS  PubMed  Google Scholar 

  • Métivier R, Gallais R, Tiffoche C et al (2008) Cyclical DNA methylation of a transcriptionally active promoter. Nature 452:45–50

    Article  PubMed  Google Scholar 

  • Muller HM, Oberwalder M, Fiegl H et al (2004) Methylation changes in faecal DNA: a marker for colorectal cancer screening? Lancet 363:1283–1285

    Article  PubMed  Google Scholar 

  • O’Reilly SL, McGlynn AP, McNulty H et al (2016) Folic acid supplementation in postpolypectomy patients in a randomized controlled trial increases tissue folate concentrations and reduces aberrant DNA biomarkers in colonic tissues adjacent to the former polyp site. J Nutr 146:933–939

    Article  PubMed  Google Scholar 

  • O’Connell JB, Maggard MA, Ko CY (2004) Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. J Natl Cancer Inst 96:1420–1425

    Article  PubMed  Google Scholar 

  • Okugawa Y, Grady WM, Goel A (2015) Epigenetic alterations in colorectal cancer: emerging biomarkers. Gastroenterology 149:1204–1225. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parikh RB, Prasad V (2016) Blood-based screening for colon cancer: a disruptive innovation or simply a disruption? JAMA 315:2519–2250

    Article  CAS  PubMed  Google Scholar 

  • Pedersen SK, Symonds EL, Baker RT et al (2015) Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia. BMC Cancer 15:654

    Article  PubMed  PubMed Central  Google Scholar 

  • Pufulete M, Al-Ghnaniem R, Rennie JA et al (2005) Influence of folate status on genomic DNA methylation in colonic mucosa of subjects without colorectal adenoma or cancer. Br J Cancer 92:838–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Cui Y, Shen L et al (2013) Folic acid supplementation and cancer risk: a meta-analysis of randomized controlled trials. Int J Cancer 133:1033–1041

    Article  CAS  PubMed  Google Scholar 

  • Qin T, Du M, Du H et al (2015) Folic acid supplements and colorectal cancer risk: meta-analysis of randomized controlled trials. Sci Rep 5:12044

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanjoaquin MA, Allen N, Couto E et al (2005) Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer 113:825–828

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Zhang Y, Zhao E et al (2012) MTHFR C677T polymorphism contributes to colorectal cancer susceptibility: evidence from 61 case-control studies. Mol Biol Rep 39:9669–9679

    Article  CAS  PubMed  Google Scholar 

  • Song J, Medline A, Mason JB et al (2000) Effects of dietary folate on intestinal tumorigenesis in the apcMin mouse. Cancer Res 60:5434–5440

    CAS  PubMed  Google Scholar 

  • Stypula-Cyrus Y, Damania D, Kunte DP et al (2013) HDAC up-regulation in early colon field carcinogenesis is involved in cell tumorigenicity through regulation of chromatin structure. PLoS One 8:e64600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarraga Lopez PJ, Albero JS, Rodriguez-Montes JA (2014) Primary and secondary prevention of colorectal cancer. Clin Med Insights Gastroenterol 7:33–46

    PubMed  PubMed Central  Google Scholar 

  • Toth K, Sipos F, Kalmar A et al (2012) Detection of methylated SEPT9 in plasma is a reliable screening method for both left- and right-sided colon cancers. PLoS One 7:e46000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollset SE, Clarke R, Lewington S et al (2013) Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals. Lancet 381:1029–1036

    Article  CAS  PubMed  Google Scholar 

  • de Vos T, Tetzner R, Model F et al (2009) Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer. Clin Chem 55:1337–1346

    Article  Google Scholar 

  • Wang Q, Lu K, Du H et al (2014) Association between cytosolic serine hydroxymethyltransferase (SHMT1) gene polymorphism and cancer risk: a meta-analysis. Biomed Pharmacother 68:757–762

    Article  CAS  PubMed  Google Scholar 

  • Warren JD, Xiong W, Bunker AM et al (2011) Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med 9:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisenberger DJ, Siegmund KD, Campan M et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  CAS  PubMed  Google Scholar 

  • Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43:1529–1544

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhang XF, Liu HX et al (2012) MTHFR C677T polymorphism and colorectal cancer risk in Asians, a meta-analysis of 21 studies. Asian Pac J Cancer Prev 13:1203–1208

    Article  PubMed  Google Scholar 

  • Yu K, Zhang J, Dou C et al (2010) Methionine synthase A2756G polymorphism and cancer risk: a meta-analysis. Eur J Hum Genet 18:370–378

    Article  CAS  PubMed  Google Scholar 

  • Zhang SM, Moore SC, Lin J et al (2006) Folate, vitamin B6, multivitamin supplements, and colorectal cancer risk in women. Am J Epidemiol 163:108–115

    Article  PubMed  Google Scholar 

  • Zheng J, Li Y, Zhu S et al (2016) NDRG4 stratifies the prognostic value of body mass index in colorectal cancer. Oncotarget 7:1311–1322

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Rozen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Lévesque, N., Leclerc, D., Rozen, R. (2017). Folate and Epigenetics: Colorectal Cancer Risk and Detection. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-31143-2_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31143-2_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31143-2

  • Online ISBN: 978-3-319-31143-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics