Skip to main content

Physically Based Character Animation Synthesis

  • Living reference work entry
  • First Online:
Handbook of Human Motion
  • 237 Accesses

Abstract

Understanding and synthesizing human motions are an important scientific quest. It also has broad applications in computer animation. Research on physically based character animation in the last two decades has achieved impressive advancement. A large variety of human activities are synthesized automatically in a physically simulated environment. The two key components of physically based character animation are (1) physical simulation that models the dynamics of humans and their environment and (2) controller optimization that optimizes the character’s motions in the simulation. This approach has an inherent realism because we all live in a world that obeys physical laws, and we evolved to survive in this physical environment. In this chapter, we will review the state of the art of physically based character animation, introduce a few established methods in physical simulation and motor control, and discuss promising future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe Y, da Silva M, Popovic’ J (2007) Multiobjective control with frictional contacts. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. SCA”07. pp 249–258

    Google Scholar 

  • Andrews S, Kry P (2013) Goal directed multi-finger manipulation: control policies and analysis. Comput Graph 37(7):830–839

    Article  Google Scholar 

  • Bai Y, Liu CK (2014) Coupling cloth and rigid bodies for dexterous manipulation. In: Proceedings of the seventh international conference on motion in games. MIG”14. ACM, pp 139–145

    Google Scholar 

  • Bharaj G, Coros S, Thomaszewski B, Tompkin J, Bickel B, Pfister H (2015) Computational design of walking automata. In: Proceedings of the 14th ACM SIGGRAPH/eurographics symposium on computer animation. SCA”15. ACM, pp 93–100

    Google Scholar 

  • Clegg A, Tan J, Turk G, Liu CK (2015) Animating human dressing. ACM Trans Graph 34(4):116:1–116:9

    Article  Google Scholar 

  • Coros S, Beaudoin P, van de Panne M (2009) Robust task-based control policies for physics-based characters. ACM Trans Graph 28(5):170:1–170:9

    Article  Google Scholar 

  • Coros S, Beaudoin P, van de Panne M (2010) Generalized biped walking control. ACM Trans Graph 29(4):130, Article 130

    Article  Google Scholar 

  • Coros S, Karpathy A, Jones B, Reveret L, van de Panne M (2011) Locomotion skills for simulated quadrupeds. ACM Trans Graph 30(4):59

    Article  Google Scholar 

  • Da Silva M, Abe Y, Popovic’ J (2008) Interactive simulation of stylized human locomotion. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH”08. ACM, pp 82:1–82:10

    Google Scholar 

  • DiLorenzo PC, Zordan VB, Sanders BL (2008) Laughing out loud: control for modeling anatomically inspired laughter using audio. In: ACM SIGGRAPH Asia 2008 papers. SIGGRAPH Asia”08. pp 125:1–125:8

    Google Scholar 

  • Erez T, Tassa Y, Todorov E (2015) Simulation tools for model-based robotics: comparison of bullet, havok, mujoco, ode and physx. In: ‘ICRA’, IEEE. pp 4397–4404

    Google Scholar 

  • Erleben K (2007) Velocity-based shock propagation for multibody dynamics animation. ACM Transactions on Graphics (TOG), 26(2), Article No. 12.

    Google Scholar 

  • Geijtenbeek T, van de Panne M, van der Stappen AF (2013) Flexible muscle-based locomotion for bipedal creatures. ACM Trans Graph 32(6)

    Google Scholar 

  • Ha S, Ye Y, Liu CK (2012) Falling and landing motion control for character animation. ACM Trans Graph 31(6):1

    Article  Google Scholar 

  • Hansen N (2006) The cma evolution strategy: a comparing review. In: Towards a new evolutionary computation. Springer, New York, pp 75–102

    Chapter  Google Scholar 

  • Hinton GE (2012) A practical guide to training restricted Boltzmann machines. In: Montavon G, Orr GB, Mller K-R (eds) Neural networks: tricks of the trade, 2nd edn, Lecture notes in computer science. Springer, New York, pp 599–619

    Chapter  Google Scholar 

  • Hodgins JK, Wooten WL, Brogan DC, O’Brien JF (1995) Animating human athletics. In: SIGGRAPH. pp 71–78

    Google Scholar 

  • Jain S, Ye Y, Liu CK (2009) Optimization-based interactive motion synthesis. ACM Trans Graph 28(1):1–10

    Article  Google Scholar 

  • Kaelbling LP, Littman ML, Moore AP (1996) Reinforcement learning: a survey. J Artif Intell Res 4:237–285

    Google Scholar 

  • Kaufman DM, Sueda S, James DL, Pai DK (2008) Staggered projections for frictional contact in multibody systems. ACM Trans Graph 27:164:1–164:11

    Article  Google Scholar 

  • Kim J, Pollard NS (2011) Direct control of simulated non-human characters. IEEE Comput Graph Appl 31(4):56–65

    Article  Google Scholar 

  • Kober J, Bagnell JAD, Peters J (2013) Reinforcement learning in robotics: a survey. Int J Robot Res 32:1238

    Article  Google Scholar 

  • Kwatra N, Wojtan C, Carlson M, Essa I, Mucha P, Turk G (2009) Fluid simulation with articulated bodies. IEEE Trans Vis Comput Graph 16(1):70–80

    Article  Google Scholar 

  • Kwon T, Hodgins J (2010) Control systems for human running using an inverted pendulum model and a reference motion capture sequence. In: Proceedings of the 2010 ACM SIGGRAPH/eurographics symposium on computer animation. SCA”10. Eurographics Association, pp 129–138

    Google Scholar 

  • Laszlo J, van de Panne M, Fiume E (1996) Limit cycle control and its application to the animation of balancing and walking. In: Proceedings of the 23rd annual conference on computer graphics and interactive techniques. SIGGRAPH”96. ACM, pp 155–162

    Google Scholar 

  • Lee S-H, Terzopoulos D (2006) Heads up! Biomechanical modeling and neuromuscular control of the neck. ACM Trans Graph 25(3):1188–1198

    Article  Google Scholar 

  • Lee S-H, Sifakis E, Terzopoulos D (2009) Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans Graph 28:99:1–99:17

    Google Scholar 

  • Levine S, Wang JM, Haraux A, Popovic’ Z, Koltun V (2012) Continuous character control with low-dimensional embeddings. ACM Trans Graph 31(4):28:1–28:10

    Article  Google Scholar 

  • Liu CK (2009) Dextrous manipulation from a grasping pose. ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2009, 28(3), Article No. 59.

    Google Scholar 

  • Liu CK, Jain S (2012) A short tutorial on multibody dynamics, Technical report GIT-GVU-15-01-1, Georgia Institute of Technology, School of Interactive Computing

    Google Scholar 

  • Liu CK, Popovic’ Z (2002) Synthesis of complex dynamic character motion from simple animations. In: Proceedings of the 29th annual conference on computer graphics and interactive techniques. SIGGRAPH”02. ACM, pp 408–416

    Google Scholar 

  • Liu L, Yin K, van de Panne M, Shao T, Xu W (2010) Sampling-based contact-rich motion control. ACM Trans Graph 29(4), Article 128

    Google Scholar 

  • Lloyd J (2005) Fast implementation of Lemke’s algorithm for rigid body contact simulation. In: Proceedings of the 2005 I.E. international conference on robotics and automation. ICRA 2005. pp 4538–4543

    Google Scholar 

  • Megaro V, Thomaszewski B, Nitti M, Hilliges O, Gross M, Coros S (2015) Interactive design of 3d-printable robotic creatures. ACM Trans Graph 34(6):216:1–216:9

    Article  Google Scholar 

  • Mordatch I, de Lasa M, Hertzmann A (2010) Robust physics-based locomotion using low-dimensional planning. In: ACM SIGGRAPH 2010 papers. SIG- GRAPH”10. ACM, pp 71:1–71:8

    Google Scholar 

  • Mordatch I, Popovic’ Z, Todorov E (2012) Contact-invariant optimization for hand manipulation. In: Proceedings of the ACM SIGGRAPH/eurographics symposium on computer animation. SCA”12. Eurographics Association, pp 137–144

    Google Scholar 

  • Mordatch I, Wang JM, Todorov E, Koltun V (2013) Animating human lower limbs using contact-invariant optimization. ACM Trans Graph 32(6):203:1–203:8

    Article  Google Scholar 

  • Muico U, Lee Y, Popovic’ J, Popovic’ Z (2009) Contact-aware nonlinear control of dynamic characters. In: ACM SIGGRAPH 2009 papers. SIGGRAPH”09. ACM, pp 81:1–81:9

    Google Scholar 

  • Ng AY, Jordan M (2000) Pegasus: a policy search method for large MDPs and POMDPs. In: Proceedings of the sixteenth conference on uncertainty in artificial intelligence, UAI’00. Morgan Kaufmann Publishers, San Francisco, pp 406–415

    Google Scholar 

  • Ng AY, Russell SJ (2000) Algorithms for inverse reinforcement learning. In: Proceedings of the seventeenth international conference on machine learning, ICML”00. Morgan Kaufmann Publishers, San Francisco, pp 663–670

    Google Scholar 

  • Otaduy MA, Tamstorf R, Steinemann D, Gross M (2009) Implicit contact handling for deformable objects. Comput Graph Forum (Proc. of Euro- graphics) 28(2):559-568

    Google Scholar 

  • Pratt JE, Chew C-M, Torres A, Dilworth P, Pratt GA (2001) Virtual model control: an intuitive approach for bipedal locomotion. Int J Robot Res 20(2):129–143

    Article  Google Scholar 

  • Si W, Lee S-H, Sifakis E, Terzopoulos D (2014) Realistic biomechanical simulation and control of human swimming. ACM Trans Graph 34(1):10:1–10:15

    Article  Google Scholar 

  • Sueda S, Kaufman A, Pai DK (2008) Musculotendon simulation for hand animation. ACM Trans Graph 27:83:1–83:8

    Article  Google Scholar 

  • Tan J, Siu K, Liu CK (2012a) Contact handling for articulated rigid bodies using lcp. Technical report GIT-GVU-15-01-2, Georgia Institute of Technology, School of Interactive Computing

    Google Scholar 

  • Tan J, Turk G, Liu CK (2012a) Soft body locomotion. ACM Trans Graph 31(4):26:1–26:11

    Article  Google Scholar 

  • Tan J, Gu Y, Liu CK, Turk G (2014) Learning bicycle stunts. ACM Trans Graph 33(4):50:1–50:12

    Article  Google Scholar 

  • Thomas F, Johnston O (1995) The illusion of life: Disney animation, Hyperion. Abbeville Press, New York, NY.

    Google Scholar 

  • Todorov E (2006) Optimal control theory. In: Bayesian brain: probabilistic approaches to neural coding. MIT Press, Cambridge, MA. pp 269–298

    Google Scholar 

  • Treuille A, Lee Y, Popovic’ Z (2007) Near-optimal character animation with continuous control. ACM Trans Graph 26(3):7

    Article  Google Scholar 

  • Tsai Y-Y, Lin W-C, Cheng KB, Lee J, Lee T-Y (2010) Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Trans Vis Comput Graph 16(2):325–337

    Article  Google Scholar 

  • Tsang W, Singh K, Eugene F (2005) Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion. In: Proceedings of the 2005 ACM SIGGRAPH/eurographics symposium on computer animation. SCA”05. pp 319–328

    Google Scholar 

  • Vincent P, Larochelle H, Bengio Y, Manzagol P-A (2008) Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th international conference on machine learning. ICML”08. ACM, pp 1096–1103

    Google Scholar 

  • Wampler K, Popovic’ Z (2009) Optimal gait and form for animal locomotion. ACM Trans Graph 28(3):60:1–60:8

    Article  Google Scholar 

  • Wang JM, Fleet DJ, Hertzmann A (2009) Optimizing walking controllers. ACM Trans Graph 28(5):168:1–168:8

    Google Scholar 

  • Wang JM, Fleet DJ, Hertzmann A (2010) Optimizing walking controllers for uncertain inputs and environments. ACM Trans Graph 29(4):73:1–73:8

    Google Scholar 

  • Wang JM, Hamner SR, Delp SL, Koltun V (2012) Optimizing locomotion controllers using biologically-based actuators and objectives. ACM Trans Graph 31(4):25:1–25:11

    Google Scholar 

  • Witkin A, Kass M (1988) Spacetime constraints. In: Proceedings of the 15th annual Conference on computer graphics and interactive techniques. SIG- GRAPH”88. ACM, pp 159–168

    Google Scholar 

  • Wu J-C, Popovic’ Z (2010) Terrain-adaptive bipedal locomotion control. In: ACM SIGGRAPH 2010 papers. SIGGRAPH”10. ACM, pp 72:1–72:10

    Google Scholar 

  • Ye Y, Liu CK (2010) Optimal feedback control for character animation using an abstract model. In: SIGGRAPH”10: ACM SIGGRAPH 2010 papers. ACM, New York, pp 1–9

    Chapter  Google Scholar 

  • Ye Y, Liu CK (2012) Synthesis of detailed hand manipulations using contact sampling. ACM Trans Graph 31(4):41:1–41:10

    Article  MathSciNet  Google Scholar 

  • Yin K, Loken K, van de Panne M (2007) SIMBICON: simple biped locomotion control. In: ACM SIGGRAPH 2007 papers. SIGGRAPH”07

    Google Scholar 

  • Yin K, Coros S, Beaudoin P, van de Panne M (2008) Continuation methods for adapting simulated skills. ACM Trans Graph 27(3):81

    Article  Google Scholar 

  • Zordan VB, Celly B, Chiu B, DiLorenzo PC (2006) Breathe easy: model and control of human respiration for computer animation. Graph Models 68:113–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Tan, J. (2016). Physically Based Character Animation Synthesis. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics