Skip to main content

Branched Copolymers Dextran-Graft-Polyacrylamide as Nanocarriers for Delivery of Gold Nanoparticles and Photosensitizers to Tumor Cells

  • Conference paper
  • First Online:
Nanophysics, Nanophotonics, Surface Studies, and Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 183))

Abstract

Colloidal gold nanoparticles, synthesized in situ in aqueous copolymer dextran-graft-polyacrylamide matrices, were obtained. Size distribution of nanoparticles in sols was established by quasi-elastic light scattering (QELS) and transmission electron microscopy (TEM). Using the fabricated sols as nanocarriers for the photosensitizer chlorin e6, antitumor photodynamic activity of the nanocomposite preparations was studied. In experiments in vitro with malignant human lymphocytes, photodynamic activity of the nanocomposite proved to be twofold higher than with free photosensitizer. Enhanced antitumor photodynamic activity of the nanocomposite was confirmed in tests on mice with implanted lung carcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang Z (2005) A review of progress in clinical photodynamic therapy. Techno Cancer Res Treat 4:283–293. doi:10.1177/153303460500400308

    Article  Google Scholar 

  2. Allison RR (2014) Photodynamic therapy: oncologic horizons. Future On col 10:123–124. doi:10.2217/fon.13.176

    Google Scholar 

  3. Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. doi:10.3322/caac.20114

    Article  Google Scholar 

  4. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637. doi:10.1016/j.addr.2008.08.003

    Article  Google Scholar 

  5. Gamaleia NF, Shton IO (2015) Gold mining for PDT: great expectations from tiny nanoparticles. Photodiagnosis Photodyn Ther 12:221–231. doi:10.1016/j.pdpdt.2015.03.002

    Article  Google Scholar 

  6. Kutsevol N, Bezugla T, Bezuglyi M, Rawiso M (2012) Branched Dextran-graft-polyacrylamide сopolymers as perspective materials for nanotechnology. Macromol Symp 317–318(1):82–90

    Article  Google Scholar 

  7. Chumachenko V, Kutsevol N, Rawiso M et al (2014) In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res Lett 9:164. doi:10.1186/1556-276X-9-164

    Article  ADS  Google Scholar 

  8. Kutsevol N, Bezuglyi M, Bezugla T, Rawiso M (2014) Star-like Dextran-graft-(polyacrylamide-co-polyacrylic acid) copolymers. Macromol Symp 335:12–16. doi:10.1002/masy.201200115

    Article  Google Scholar 

  9. Kutsevol N, Guenet J-M, Melnik N et al (2006) Solution properties of dextran–polyacrylamide graft copolymers. Polymer (Guildf) 47:2061–2068. doi:10.1016/j.polymer.2006.01.024

    Article  Google Scholar 

  10. Kutsevol NV, Chumachenko VA, Rawiso M et al (2015) Dextran-G-polyacrylamide star polymers: prospects of application in nanotechnology. J Struct Chem 56:1016–1023

    Article  Google Scholar 

  11. Cheng Y, Samia AC, Meyers JD et al (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130:10643–10647. doi:10.1021/ja801631c

    Article  Google Scholar 

  12. Powell AC, Paciotti GF, Libutti SK (2010) Colloidal gold: a novel nanoparticle for targeted cancer therapeutics. Methods Mol Biol 624:375–384. doi:10.1007/978-1-60761-609-2_25

    Article  Google Scholar 

  13. Gamaleia NF, Shishko ED, Dolinsky GA et al (2010) Photodynamic activity of hematoporphyrin conjugates with gold nanoparticles: experiments in vitro. Exp On col 32:44–47

    Google Scholar 

  14. Gamaleia NF, Shishko ED, Shton IA et al (2012) Photodynamic activity of second-generation sensitizers Fotolon (chlorin e6) and its gold nanocomposite: in vitro and in vivo studies. Photobiol Photomed 9:99–103 [In Ukrainian]

    Google Scholar 

Download references

Acknowledgments

The work of N.F. Gamaleia and I.E. Shton was supported in part by the NATO SPS Programme Multi-Year Project No. 984702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chumachenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Chumachenko, V.A., Shton, I.O., Shishko, E.D., Kutsevol, N.V., Marinin, A.I., Gamaleia, N.F. (2016). Branched Copolymers Dextran-Graft-Polyacrylamide as Nanocarriers for Delivery of Gold Nanoparticles and Photosensitizers to Tumor Cells. In: Fesenko, O., Yatsenko, L. (eds) Nanophysics, Nanophotonics, Surface Studies, and Applications. Springer Proceedings in Physics, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-319-30737-4_32

Download citation

Publish with us

Policies and ethics