Skip to main content

Targeted Therapy for Malignant Brain Tumors

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

Glioblastoma multiforme (GBM) is the most aggressive human brain tumor. Standard of care includes surgical resection, radiation therapy, and concomitant adjuvant chemotherapy with temozolomide (TMZ) which can only modestly improve median survival. Resistance to treatment is often associated with a heterogeneous population of cells, with various genetic aberrations coexisting within the same cancer. In recent years, improvements have been targeted at improving the precision of tumor debulking during surgery and using thermal and electric fields to increase tumor cell kill. In this chapter however, we discuss innovative technologies for targeted GBM therapies under preclinical and clinical evaluation. These include modulating the MGMT activities to overcome TMZ resistance, the use of virotherapies, microRNAs, antiangiogenic and anti-EGFR therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stupp R, et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol. 2002;20(5):1375–82.

    Article  CAS  PubMed  Google Scholar 

  2. Stummer W, et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):1003–13.

    Article  CAS  PubMed  Google Scholar 

  3. Turner SG, et al. The effect of field strength on glioblastoma multiforme response in patients treated with the NovoTTF-100A system. World J Surg Oncol. 2014;12(1):162.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Maier-Hauff K, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317–24.

    Article  PubMed  Google Scholar 

  5. Ranganath SH, et al. Hydrogel matrix entrapping PLGA-paclitaxel microspheres: drug delivery with near zero-order release and implantability advantages for malignant brain tumour chemotherapy. Pharm Res. 2009;26(9):2101–14.

    Article  CAS  PubMed  Google Scholar 

  6. Holland EC. Glioblastoma multiforme: the terminator. Proc Natl Acad Sci. 2000;97(12):6242–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silbergeld DL, Chicoine MR. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg. 1997;86(3):525–31.

    Article  CAS  PubMed  Google Scholar 

  8. Aydın H, et al. Patterns of failure following CT-based 3-D irradiation for malignant glioma. Strahlenther Onkol. 2001;177(8):424–31.

    Article  PubMed  Google Scholar 

  9. Wallner KE, et al. Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys. 1989;16(6):1405–9.

    Article  CAS  PubMed  Google Scholar 

  10. Berens ME, Giese A. “… those left behind”. Biology and oncology of invasive glioma cells. Neoplasia. 1999;1(3):208–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  13. Stupp R, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  14. Stevens MF, et al. Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo [5, 1-d]-1, 2, 3, 5-tetrazin-4 (3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res. 1987;47(22):5846–52.

    CAS  PubMed  Google Scholar 

  15. Drabløs F, et al. Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair. 2004;3(11):1389–407.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang J, et al. Temozolomide: mechanisms of action, repair and resistance. Curr Mol Pharmacol. 2012;5(1):102–14.

    Article  CAS  PubMed  Google Scholar 

  17. Clark A, et al. Antitumor imidazotetrazines. 32.1 synthesis of novel imidazotetrazinones and related bicyclic heterocycles to probe the mode of action of the antitumor drug temozolomide. J Med Chem. 1995;38(9):1493–504.

    Article  CAS  PubMed  Google Scholar 

  18. Patel M, et al. Plasma and cerebrospinal fluid pharmacokinetics of temozolomide. Proc Am Soc Clin Oncol 1995;14:461a.

    Google Scholar 

  19. Kaina B, et al. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair. 2007;6(8):1079–99.

    Article  CAS  PubMed  Google Scholar 

  20. Park C-K, et al. The changes in MGMT promoter methylation status in initial and recurrent glioblastomas. Transl Oncol. 2012;5(5):393–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hegi ME, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  22. Johannessen T-CA, et al. DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer Treat Rev. 2008;34(6):558–67.

    Article  CAS  PubMed  Google Scholar 

  23. Wood RD, et al. Human DNA repair genes. Science. 2001;291(5507):1284–9.

    Article  CAS  PubMed  Google Scholar 

  24. Tentori L, et al. Pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) activity in PARP-1 silenced tumour cells increases chemosensitivity to temozolomide and to a N3-adenine selective methylating agent. Curr Cancer Drug Targets. 2010;10(4):368–83.

    Article  CAS  PubMed  Google Scholar 

  25. Tentori L, et al. Pharmacological inhibition of poly (ADP-ribose) polymerase-1 modulates resistance of human glioblastoma stem cells to temozolomide. BMC Cancer. 2014;14(1):151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hunter C, et al. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res. 2006;66(8):3987–91.

    Article  CAS  PubMed  Google Scholar 

  27. Sottoriva A, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci. 2013;110(10):4009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patel AP, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344(6190):1396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Endaya BB, et al. Transcriptional profiling of dividing tumor cells detects intratumor heterogeneity linked to cell proliferation in a brain tumor model. Mol Oncol. 2016;10(1):126–37.

    Article  CAS  PubMed  Google Scholar 

  30. Eramo A, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13(7):1238–41.

    Article  CAS  PubMed  Google Scholar 

  31. Vescovi AL, et al. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425–36.

    Article  CAS  PubMed  Google Scholar 

  32. Gilbert CA, Ross AH. Cancer stem cells: cell culture, markers, and targets for new therapies. J Cell Biochem. 2009;108(5):1031–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heywood RM, et al. A review of the role of stem cells in the development and treatment of glioma. Acta Neurochir. 2012;154(6):951–69.

    Article  PubMed  Google Scholar 

  34. Seymour T, et al. Targeting aggressive cancer stem cells in glioblastoma. Front Oncol. 2015;5(159):1–9.

    Google Scholar 

  35. Suva ML, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell. 2014;157(3):580–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerson SL. Clinical relevance of MGMT in the treatment of cancer. J Clin Oncol. 2002;20(9):2388–99.

    Article  CAS  PubMed  Google Scholar 

  37. Quinn JA, et al. Phase 1 trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol. 2005;23(28):7178–87.

    Article  CAS  PubMed  Google Scholar 

  38. Quinn JA, et al. Phase II trial of temozolomide plus O6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. J Clin Oncol. 2009;27(8):1262–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Beard BC, et al. Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J Clin Invest. 2010;120(7):2345–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adair JE, et al. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. J Clin Invest. 2014;124(9):4082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pletsas D, et al. Polar, functionalized guanine-O6 derivatives resistant to repair by O6-alkylguanine-DNA alkyltransferase: implications for the design of DNA-modifying drugs. Eur J Med Chem. 2006;41(3):330–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ramirez YP, et al. Evaluation of novel imidazotetrazine analogues designed to overcome temozolomide resistance and glioblastoma regrowth. Mol Cancer Ther. 2015;14(1):111–9.

    Article  CAS  PubMed  Google Scholar 

  43. Akiyama Y, et al. YKL-40 downregulation is a key factor to overcome temozolomide resistance in a glioblastoma cell line. Oncol Rep. 2014;32(1):159–66.

    CAS  PubMed  Google Scholar 

  44. Hiddingh L, et al. EFEMP1 induces γ-secretase/notch-mediated temozolomide resistance in glioblastoma. Oncotarget. 2014;5(2):363–74.

    Article  PubMed  Google Scholar 

  45. Alpern-Elran H, Brem S. Angiogenesis in human brain tumors: inhibition by copper depletion. Surg Forum. 1985;36:498–500.

    Google Scholar 

  46. Brem S, et al. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol. 2005;7(3):246–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cuajungco MP, Lees GJ. Nitric oxide generators produce accumulation of chelatable zinc in hippocampal neuronal perikarya. Brain Res. 1998;799(1):118–29.

    Article  CAS  PubMed  Google Scholar 

  48. Triscott J, et al. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget. 2012;3(10):1112–23.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castro BA, Aghi MK. Bevacizimab for glioblastoma: current indications, surgical implications, and future directions. Neurosurg Focus. 2014;37(6):E9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Curry RC, et al. Bevacizumab in high-grade gliomas: past, present, and future. Expert Rev Anticancer Ther. 2015;15(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  51. Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11(1):73–91.

    Article  CAS  PubMed  Google Scholar 

  52. Ellis LM. Mechanisms of action of bevacizumab as a component of therapy for metastatic colorectal cancer. Semin Oncol. 2006;33(5 Suppl 10):S1–7.

    Article  CAS  PubMed  Google Scholar 

  53. Chinot OL, et al. Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.

    Article  CAS  PubMed  Google Scholar 

  54. Lai A, et al. Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. J Clin Oncol. 2011;29(2):142–8.

    Article  CAS  PubMed  Google Scholar 

  55. Chamberlain MC. Radiographic patterns of relapse in glioblastoma. J Neurooncol. 2011;101(2):319–23.

    Article  PubMed  Google Scholar 

  56. Pope W, et al. Patterns of progression in patients with recurrent glioblastoma treated with bevacizumab. Neurology. 2011;76(5):432–7.

    Article  CAS  PubMed  Google Scholar 

  57. Sahade M, et al. Cediranib: a VEGF receptor tyrosine kinase inhibitor. Future Oncol. 2012;8(7):775–81.

    Article  CAS  PubMed  Google Scholar 

  58. Batchelor TT, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell. 2007;11(1):83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kamoun WS, et al. Edema control by cediranib, a vascular endothelial growth factor receptor–targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. J Clin Oncol. 2009;27(15):2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Batchelor TT, et al. Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin Cancer Res. 2014;20(22):5612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee EQ, et al. A multicenter, phase II, randomized, noncomparative clinical trial of radiatioand temozolomide with or without vandetanibin newly diagnosed glioblastoma patients. Clin Cancer Res. 2015;21(16):3610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Smith JS, et al. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst. 2001;93(16):1246–56.

    Article  CAS  PubMed  Google Scholar 

  63. Heimberger AB, et al. The natural history of EGFR and EGFRvIII in glioblastoma patients. J Transl Med. 2005;3:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Heimberger AB, et al. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005;11(4):1462–6.

    Article  CAS  PubMed  Google Scholar 

  65. Viana-Pereira M, et al. Analysis of EGFR overexpression, EGFR gene amplification and the EGFRvIII mutation in Portuguese high-grade gliomas. Anticancer Res. 2008;28(2A):913–20.

    PubMed  Google Scholar 

  66. Pines G, et al. Oncogenic mutant forms of EGFR: lessons in signal transduction and targets for cancer therapy. FEBS Lett. 2010;584(12):2699–706.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Patel R, Leung HY. Targeting the EGFR-family for therapy: biological challenges and clinical perspective. Curr Pharm Des. 2012;18(19):2672–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chakravarti A, et al. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol. 2004;22(10):1926–33.

    Article  CAS  PubMed  Google Scholar 

  69. Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22.

    Article  CAS  PubMed  Google Scholar 

  70. Huang H-JS, et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem. 1997;272(5):2927–35.

    Article  CAS  PubMed  Google Scholar 

  71. Fan Q-W, et al. EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell. 2013;24(4):438–49.

    Article  CAS  PubMed  Google Scholar 

  72. Gan HK, et al. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci. 2009;16(6):748–54.

    Article  CAS  PubMed  Google Scholar 

  73. Sampson JH, et al. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions. Neuro Oncol. 2007;9(3):343–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karpel-Massler G, et al. Therapeutic inhibition of the epidermal growth factor receptor in high-grade gliomas: where do we stand? Mol Cancer Res. 2009;7(7):1000–12.

    Article  CAS  PubMed  Google Scholar 

  75. Liang W, et al. Multi-targeted antiangiogenic tyrosine kinase inhibitors in advanced non-small cell lung cancer: meta-analyses of 20 randomized controlled trials and subgroup analyses. PLoS One. 2014;9(10):e109757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Wu C, et al. Gefitinib as palliative therapy for lung adenocarcinoma metastatic to the brain. Lung Cancer. 2007;57(3):359–64.

    Article  PubMed  Google Scholar 

  77. Neyns B, et al. Stratified phase II trial of cetuximab in patients with recurrent high-grade glioma. Ann Oncol. 2009;20(9):1596–603.

    Article  CAS  PubMed  Google Scholar 

  78. Chong DQ, et al. Combined treatment of nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status. BMC Cancer. 2015;15(1):255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Westphal M, et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 2015;51(4):522–32.

    Article  CAS  PubMed  Google Scholar 

  80. Chen KS, Mitchell DA. Monoclonal antibody therapy for malignant glioma. New York: Springer; 2012. p. 121–41.

    Google Scholar 

  81. Bode U, et al. Nimotuzumab treatment of malignant gliomas. Expert Opin Biol Ther. 2012;12(12):1649–59.

    Article  CAS  PubMed  Google Scholar 

  82. Harris JR, Mark lJ. Keyhole limpet hemocyanin: molecular structure of a potent marine immunoactivator. Eur Urol. 2000;37 Suppl 3:24–33.

    Article  CAS  PubMed  Google Scholar 

  83. Swartz AM, et al. Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy. 2014;6(6):679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kaufmann JK, Chiocca EA. Glioma virus therapies between bench and bedside. Neuro Oncol. 2014;16(3):334–51.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ring JAM. Cytolytic viruses as potential anti-cancer agents. J Gen Virol. 2002;83:491–502.

    Article  PubMed  Google Scholar 

  86. Kumar S, et al. Virus combinations and chemotherapy for the treatment of human cancers. Curr Opin Mol Ther. 2008;10(4):371–9.

    PubMed  Google Scholar 

  87. Russell SJ, et al. Oncolytic virotherapy. Nat Biotechnol. 2012;30(7):658–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Markert J, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther. 2000;7(10):867–74.

    Article  CAS  PubMed  Google Scholar 

  89. Rampling R, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther. 2000;7(10):859–66.

    Article  CAS  PubMed  Google Scholar 

  90. Markert JM, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther. 2014;22(5):1048–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Todo T, et al. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci. 2001;98(11):6396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Andtbacka RH, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8.

    Article  CAS  PubMed  Google Scholar 

  93. Brown MC, et al. Mitogen-activated protein kinase-interacting kinase regulates mTOR/AKT signaling and controls the serine/arginine-rich protein kinase-responsive type 1 internal ribosome entry site-mediated translation and viral oncolysis. J Virol. 2014;88(22):13149–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kim JH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006;14(3):361–70.

    Article  CAS  PubMed  Google Scholar 

  95. Mastrangelo MJ, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999;6(5):409–22.

    Article  CAS  PubMed  Google Scholar 

  96. Merrill MK, et al. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 2004;6(3):208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Desjardins A, et al. Oncolytic polio/rhinovirus recombinant (PCSRIPO) against recurrent glioblastoma (GBM): optional dose determination. In: ASCO annual meeting, J Clin Oncol. 2015;33(15):2068.

    Google Scholar 

  98. Perez OD, et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther. 2012;20(9):1689–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Miller CR, et al. Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Res. 2002;62(3):773–80.

    CAS  PubMed  Google Scholar 

  100. Robbins JM, et al. Additive therapeutic effect of a non-lytic retroviral replicating vector (Toca 511) and 5-fluorocytosine in combination with lomustine in experimental glioma models. In: ASCO annual meeting, J Clin Oncol 2015;33(15)_suppl e13033.

    Google Scholar 

  101. Maquire CA. Preventing growth of brain tumors by creating a zone of resistance. Mol Ther. 2008;16(10):1695–702.

    Article  CAS  Google Scholar 

  102. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  103. Filipowicz W, et al. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14.

    Article  CAS  PubMed  Google Scholar 

  104. Godlewski J, et al. MicroRNAs and glioblastoma; the stem cell connection. Cell Death Differ. 2010;17(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  105. Leucht C, et al. MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci. 2008;11(6):641–8.

    Article  CAS  PubMed  Google Scholar 

  106. Malzkorn B, et al. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 2010;20(3):539–50.

    Article  CAS  PubMed  Google Scholar 

  107. Tan X, et al. The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. PLoS One. 2012;7(11):e49570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang CH, et al. MicroRNA-21 promotes glioblastoma tumorigenesis by down-regulating insulin-like growth factor-binding protein-3 (IGFBP3). J Biol Chem. 2014;289(36):25079–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Alrfaei BM, et al. microRNA-100 targets SMRT/NCOR2, reduces proliferation, and improves survival in glioblastoma animal models. PLoS One. 2013;8(11):e80865.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. You SH, et al. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat Struct Mol Biol. 2013;20(2):182–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang W, et al. Knockdown of miR-210 decreases hypoxic glioma stem cells stemness and radioresistance. Exp Cell Res. 2014;326(1):22–35.

    Article  CAS  PubMed  Google Scholar 

  112. Shang C, et al. MiR-210 up-regulation inhibits proliferation and induces apoptosis in glioma cells by targeting SIN3A. Med Sci Monit. 2014;20:2571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ucbek A, et al. Effect of metformin on the human T98G glioblastoma multiforme cell line. Exp Ther Med. 2014;7(5):1285–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu X, et al. Discrete mechanisms of mTOR and cell cycle regulation by AMPK agonists independent of AMPK. Proc Natl Acad Sci. 2014;111(4):E435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Batinic-Haberle I, et al. Latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20:2372–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weitzel DH, et al. Radioprotection of the brain white matter by Mn (III) N-butoxyethylpyridylporphyrin–based superoxide dismutase mimic MnTnBuOE-2-PyP5+. Mol Cancer Ther. 2015;14(1):70–9.

    Article  CAS  PubMed  Google Scholar 

  117. Badr CE, et al. Targeting cancer cells with the natural compound obtusaquinone. J Natl Cancer Inst. 2013;105(9):643–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kim CK, et al. N-acetylcysteine amide augments the therapeutic effect of neural stem cell-based antiglioma oncolytic virotherapy. Mol Ther. 2013;21(11):2063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aboody KS, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A. 2000;97(23):12846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Stuckey DW, Shah K. Stem cell-based therapies for cancer treatment: separating hope from hype”. Nat Rev Cancer. 2014;14(10):683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ho IAW, et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells. 2013;31:146–55.

    Article  CAS  PubMed  Google Scholar 

  122. Motaln H, et al. Human mesenchymal stem cells exploit the immune response mediating chemokines to impact the phenotype of glioblastoma. Cell Transplant. 2012;21(7):1529–45.

    Article  PubMed  Google Scholar 

  123. Akimoto K, et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 2013;22(9):1370–86.

    Article  CAS  PubMed  Google Scholar 

  124. Katakowski M, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth. Cancer Lett. 2013;335(1):201–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Teng J, et al. Systemic anticancer neural stem cells in combination with a cardiac glycoside for glioblastoma therapy. Stem Cells. 2014;32(8):2021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ryu CH, et al. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther. 2011;22(6):733–43.

    Article  CAS  PubMed  Google Scholar 

  127. Nakamizo A, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas”. Cancer Res. 2005;65(8):3307–18.

    CAS  PubMed  Google Scholar 

  128. Sasportas LS, et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A. 2009;106(12):4822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yulyana Y, et al. carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma. Stem Cells Dev. 2013;22(13):1870–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  130. Matuskova M, et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett. 2010;290(1):58–67.

    Article  CAS  PubMed  Google Scholar 

  131. Yin J, et al. hMSC-mediated concurrent delivery of endostatin and carboxylesterase to mouse xenografts suppresses glioma initiation and recurrence”. Mol Ther. 2011;19(6):1161–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duebgen M. Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst. 2014;106(6):1–9.

    Article  Google Scholar 

  133. Roger M, et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm. 2012;423(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  134. Chan XH, et al. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep. 2012;2(3):591–602.

    Article  CAS  PubMed  Google Scholar 

  135. Sandmann T, et al., Patients With Proneural Glioblastoma May Derive Overall Survival Benefit From the Addition of Bevacizumab to First-Line Radiotherapy and Temozolomide: Retrospective Analysis of the AVAglio Trial. J Clin Oncol. 2015;33(25):2735–44.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Assistant Prof. Katherine Peters (Duke University Medical Center, USA) for her valuable inputs and for proof reading this chapter, Ms. Suzanne McDavitt for her skilled editorial assistance. Special thanks to A/Prof. Toh HC (National Cancer Center, Singapore) and A/Prof Yeo Tseng Tsai (National University Hospital, Singapore) for their support. Last but not least, we would also like to express our gratitude to funding agencies, National Medical Research Council of Singapore, Singhealth Research Grant Foundation and National Cancer Center Research Fund for their supports. X.O.B. is supported by the NIH Common Fund through the Office of Strategic Coordination/Office of the NIH Director, NCI U19 CA179563 and NIN NCI P01 CA069246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lam, P., Dinesh, N., Breakefield, X.O. (2016). Targeted Therapy for Malignant Brain Tumors. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_17

Download citation

Publish with us

Policies and ethics