Skip to main content

Modifying Colourings Between Time-Steps to Tackle Changes in Dynamic Random Graphs

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9595))

Included in the following conference series:

Abstract

Many real world operational research problems can be formulated as graph colouring problems. Algorithms for this problem usually operate under the assumption that the size and constraints of a problem are fixed, allowing us to model the problem using a static graph. For many problems however, this is not the case and it would be more appropriate to model such problems using dynamic graphs. In this paper we will explore whether feasible colourings for one graph at time-step t can be modified into a colouring for a similar graph at time-step \(t+1\) in some beneficial manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All algorithms were programmed in C++ and executed on a 3.3 GHZ Windows 7 PC with an Intel Core i3-2120 processor and 8 GB RAM.

References

  1. Aardal, K.I., Van Hoesel, S.P., Koster, A.M., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Ann. Oper. Res. 153(1), 79–129 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blöchliger, I., Zufferey, N.: A graph coloring heuristic using partial solutions and a reactive tabu scheme. Comput. Oper. Res. 35(3), 960–975 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaitin, G.J.: Register allocation & spilling via graph coloring. ACM Sigplan Not. 17(6), 98–101 (1982)

    Article  MathSciNet  Google Scholar 

  4. Dupont, A., Linhares, A.C., Artigues, C., Feillet, D., Michelon, P., Vasquez, M.: The dynamic frequency assignment problem. Eur. J. Oper. Res. 195(1), 75–88 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erben, W.: A grouping genetic algorithm for graph colouring and exam timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 132–156. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Gyárfás, A., Lehel, J.: On-line and first fit colorings of graphs. J. Graph Theor. 12(2), 217–227 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Harary, F., Gupta, G.: Dynamic graph models. Math. Comput. Model. 25(7), 79–87 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Computing 39(4), 345–351 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39(3), 378–406 (1991)

    Article  MATH  Google Scholar 

  10. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. J. Res. Nat. Bur. Stand. 84(6), 489–506 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lewis, R.: Constructing wedding seating plans: a tabu subject. In: Proceedings of the International Conference on Genetic and Evolutionary Methods (GEM). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), p. 1 (2013)

    Google Scholar 

  12. Lovász, L., Saks, M., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance ratio. Ann. Discrete Math. 43, 319–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Monical, C., Stonedahl, F.: Static vs. dynamic populations in genetic algorithms for coloring a dynamic graph. In: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation, pp. 469–476. ACM (2014)

    Google Scholar 

  14. Preuveneers, D., Berbers, Y.: ACODYGRA: an agent algorithm for coloring dynamic graphs. Symbolic Numer. Algorithms Sci. Comput. 6, 381–390 (2004)

    MATH  Google Scholar 

  15. Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems. Eur. J. Oper. Res. 198(2), 392–404 (2009)

    Article  MATH  Google Scholar 

  16. Tantipathananandh, C., Berger-Wolf, T., Kempe, D.: A framework for community identification in dynamic social networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 717–726. ACM (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley Hardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hardy, B., Lewis, R., Thompson, J. (2016). Modifying Colourings Between Time-Steps to Tackle Changes in Dynamic Random Graphs. In: Chicano, F., Hu, B., García-Sánchez, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2016. Lecture Notes in Computer Science(), vol 9595. Springer, Cham. https://doi.org/10.1007/978-3-319-30698-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30698-8_13

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30697-1

  • Online ISBN: 978-3-319-30698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics