Skip to main content

Radial Velocities as an Exoplanet Discovery Method

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The precise radial velocity technique is a cornerstone of exoplanetary astronomy. Astronomers measure Doppler shifts in the star’s spectral features, which track the line-of-sight gravitational accelerations of a star caused by the planets orbiting it. The method has its roots in binary star astronomy, and exoplanet detection represents the low-companion-mass limit of that application. This limit requires control of several effects of much greater magnitude than the signal sought: the motion of the telescope must be subtracted, the instrument must be calibrated, and spurious Doppler shift “jitter” must be mitigated or corrected. Two primary forms of instrumental calibration are the stable spectrograph and absorption cell methods, the former being the path taken for the next generation of spectrographs. Spurious, apparent Doppler shifts due to non-center-of-mass motion (jitter) can be the result of stellar magnetic activity or photospheric motions and granulation. Several avoidance, mitigation, and correction strategies exist, including careful analysis of line shapes and radial velocity wavelength dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bastien FA, Stassun KG, Basri G, Pepper J (2013) An observational correlation between stellar brightness variations and surface gravity. Nature 500:427–430. doi:10.1038/nature12419, 1308.4728

  • Bastien FA, Stassun KG, Pepper J et al (2014) Radial velocity variations of photometrically quiet, chromospherically inactive Kepler stars: a link between RV jitter and photometric flicker. AJ 147:29. doi:10.1088/0004-6256/147/2/29, 1310.7152

  • Bean JL, Seifahrt A, Hartman H et al (2010) The proposed giant planet orbiting VB 10 does not exist. ApJ 711:L19–L23. doi:10.1088/2041-8205/711/1/L19

    Article  ADS  Google Scholar 

  • Boisse I, Bouchy F, Hébrard G et al (2011) Disentangling between stellar activity and planetary signals. A&A 528:A4. doi:10.1051/0004-6361/201014354

    Article  ADS  Google Scholar 

  • Borucki WJ, Koch D, Basri G et al (2010) Kepler planet-detection mission: introduction and first results. Science 327:977–980 doi:10.1126/science.1185402

    Article  ADS  Google Scholar 

  • Butler RP, Marcy GW, Williams E et al (1996) Attaining Doppler precision of 3 M s-1. PASP 108:500

    Article  ADS  Google Scholar 

  • Butler RP, Marcy GW, Williams E, Hauser H, Shirts P (1997) Three new “51 Pegasi–Type” planets. ApJ 474:L115

    Article  ADS  Google Scholar 

  • Campbell B, Walker GAH (1979) Precision radial velocities with an absorption cell. PASP 91:540–545. doi:10.1086/130535

    Article  ADS  Google Scholar 

  • Chubak C, Marcy G, Fischer DA et al (2012) Precise radial velocities of 2046 nearby FGKM stars and 131 standards. ArXiv e-prints 1207.6212

    ADS  Google Scholar 

  • Dumusque X, Pepe F, Lovis C et al (2012) An earth-mass planet orbiting α centauri B. Nature 491:207–211. doi:10.1038/nature11572

    Article  ADS  Google Scholar 

  • Fischer DA, Anglada-Escude G, Arriagada P, et al (2016) State of the field: extreme precision radial velocities. PASP 128:066001

    Article  ADS  Google Scholar 

  • Gao P, Plavchan P, Gagné J et al (2016) Retrieval of precise radial velocities from near-infrared high-resolution spectra of low-mass stars. PASP 128(10):104,501. doi:10.1088/1538-3873/128/968/104501, 1603.05997

  • Hatzes AP (1996) Simulations of stellar radial velocity and spectral line bisector variations: I. nonradial pulsations. PASP 108:839. doi:10.1086/133805

  • Hekker S, Reffert S, Quirrenbach A et al (2006) Precise radial velocities of giant stars. I. Stable stars. A&A 454:943–949. doi:10.1051/0004-6361:20064946, astro-ph/0604502

  • Howard AW, Johnson JA, Marcy GW et al (2009) The NASA-UC Eta-Earth program. I. A super-earth orbiting HD 7924. ApJ 696:75–83. doi:10.1088/0004-637X/696/1/75, 0901.4394

  • Johnson JA, Aller KM, Howard AW, Crepp JR (2010) Giant planet occurrence in the stellar mass-metallicity plane. PASP 122:905–915. doi:10.1086/655775, 1005.3084

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128. doi:10.1006/icar.1993.1010

    Article  ADS  Google Scholar 

  • Kjeldsen H, Bedding TR, Butler RP et al (2005) Solar-like oscillations in α centauri B. ApJ 635:1281–1290. doi:10.1086/497530

    Article  ADS  Google Scholar 

  • Latham DW, Stefanik RP, Mazeh T, Mayor M, Burki G (1989) The unseen companion of HD114762 – a probable brown dwarf. Nature 339:38–40. doi:10.1038/339038a0

    Article  ADS  Google Scholar 

  • Lovis C, Dumusque X, Santos NC et al (2011, submitted) The HARPS search for southern extra-solar planets XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities. A&A arXiv:11075325 arXiv:1107.5325

    Google Scholar 

  • Mahadevan S, Ramsey L, Bender C et al (2012) The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope. Proc SPIE 8446:84461S. Ground-based and airborne instrumentation for astronomy IV. doi:10.1117/12.926102, 1209.1686.

  • Marcy GW, Butler RP (1992) Precision radial velocities with an iodine absorption cell. PASP 104:270–277. doi:10.1086/132989

    Article  ADS  Google Scholar 

  • Mayor M Queloz D (1995) A Jupiter-Mass companion to a solar-type star. Nature 378:355

    Article  ADS  Google Scholar 

  • Pepe FA, Lovis C (2008) From HARPS to CODEX: exploring the limits of Doppler measurements. Phys Scr T130(1):014007. doi:10.1088/0031-8949/2008/T130/014007

    Article  ADS  Google Scholar 

  • Pepe FA, Cristiani S, Rebolo Lopez R et al (2010) ESPRESSO: the Echelle spectrograph for rocky exoplanets and stable spectroscopic observations. In: Ground-based and airborne instrumentation for astronomy III. Proc SPIE 7735:77350F. doi:10.1117/12.857122

  • Queloz D, Henry GW, Sivan JP et al (2001a) No planet for HD166435. A&A 379:279–287

    Article  ADS  Google Scholar 

  • Queloz D, Mayor M, Udry S et al (2001b) From CORALIE to HARPS. The way towards 1 m s−1 precision Doppler measurements. Messenger 105:1–7

    ADS  Google Scholar 

  • Quirrenbach A, Amado PJ, Mandel H et al (2010) CARMENES: Calar Alto high-resolution search for M dwarfs with exo-earths with a near-infrared Echelle spectrograph. In: Ground-based and airborne instrumentation for astronomy III. Proc SPIE 7735:773513. doi:10.1117/12.857777

  • Robertson P, Mahadevan S (2014) Disentangling planets and stellar activity for Gliese 667C. ApJ 793:L24. doi:10.1088/2041-8205/793/2/L24, 1409.0021

  • Robertson P, Mahadevan S, Endl M, Roy A (2014) Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581. Science 345:440–444. doi:10.1126/science.1253253, 1407.1049

  • Wright JT (2005) Radial velocity jitter in stars from the California and Carnegie planet search at keck observatory. PASP 117:657–664. doi:10.1086/430369

    Article  ADS  Google Scholar 

  • Wright JT, Eastman JD (2014) Barycentric corrections at 1 cm s−1 for precise Doppler velocities. PASP 126:838–852. doi:10.1086/678541, 1409.4774

  • Wright JT, Gaudi BS (2013) Exoplanet detection methods, p 489. doi:10.1007/978-94-007-5606-9_10

  • Wright JT, Howard AW (2009) Efficient fitting of multiplanet Keplerian models to radial velocity and astrometry data. ApJS 182:205–215. doi:10.1088/0067-0049/182/1/205, 0904.3725

  • Wright JT, Marcy GW, Butler RP et al (2008) The Jupiter twin HD 154345b. ApJ 683:L63–L66. doi:10.1086/587461, arXiv:0802.1731

  • Wright JT, Roy A, Mahadevan S et al (2013) MARVELS-1: a face-on double-lined binary star masquerading as a resonant planetary system and consideration of rare false positives in radial velocity planet searches. ApJ 770:119. doi:10.1088/0004-637X/770/2/119, 1305.0280

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason T. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Wright, J. (2017). Radial Velocities as an Exoplanet Discovery Method. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics