Skip to main content

The Rossiter–McLaughlin Effect in Exoplanet Research

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

The Rossiter–McLaughlin effect occurs during a planet’s transit. It provides the main means of measuring the sky-projected spin–orbit angle between a planet’s orbital plane and its host star’s equatorial plane. Observing the Rossiter–McLaughlin effect is now a near routine procedure. It is an important element in the orbital characterization of transiting exoplanets. Measurements of the spin–orbit angle have revealed a surprising diversity, far from the placid, Kantian, and Laplacian ideals, whereby planets form, and remain, on orbital planes coincident with their star’s equator. This chapter will review a short history of the Rossiter–McLaughlin effect, how it is modeled, and will summarize the current state of the field before describing other uses for a spectroscopic transit and alternative methods of measuring the spin–orbit angle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Addison BC, Tinney CG, Wright DJ et al (2013) A nearly polar orbit for the extrasolar hot Jupiter WASP-79b. ApJ 774:L9

    Article  ADS  Google Scholar 

  • Albrecht S, Reffert S, Snellen I, Quirrenbach A, Mitchell DS (2007) The spin axes orbital alignment of both stars within the eclipsing binary system V1143 Cyg using the Rossiter-McLaughlin effect. A&A 474:565–573

    Article  ADS  Google Scholar 

  • Albrecht S, Reffert S, Snellen IAG, Winn JN (2009) Misaligned spin and orbital axes cause the anomalous precession of DIHerculis. Nature 461:373–376

    Article  ADS  Google Scholar 

  • Albrecht S, Winn JN, Carter JA, Snellen IAG, de Mooij EJW (2011a) The banana project. III. Spin-orbit alignment in the long-period eclipsing binary NY cephei. ApJ 726:68

    Google Scholar 

  • Albrecht S, Winn JN, Johnson JA et al (2011b) Two upper limits on the Rossiter-Mclaughlin effect, with differing implications: WASP-1 has a high obliquity and WASP-2 is indeterminate. ApJ 738:50

    Article  ADS  Google Scholar 

  • Albrecht S, Winn JN, Johnson JA et al (2012) Obliquities of hot Jupiter host stars: evidence for tidal interactions and primordial misalignments. ApJ 757:18

    Article  ADS  Google Scholar 

  • Albrecht S, Winn JN, Marcy GW et al (2013) Low stellar obliquities in compact multiplanet systems. ApJ 771:11

    Article  ADS  Google Scholar 

  • Alonso R, Guillot T, Mazeh T et al (2009) The secondary eclipse of the transiting exoplanet CoRoT-2b. A&A 501:L23–L26

    Article  ADS  Google Scholar 

  • Anderson DR, Hellier C, Gillon M et al (2010) Wasp-17b: an ultra-low density planet in a probable retrograde orbit. ApJ 709:159–167

    Article  ADS  Google Scholar 

  • Anderson DR, Triaud AHMJ, Turner OD et al (2015) The well-aligned orbit of wasp-84b: evidence for disk migration of a hot Jupiter. ApJ 800:L9

    Article  ADS  Google Scholar 

  • Anderson KR, Storch NI, Lai D (2016) Formation and stellar spin-orbit misalignment of hot Jupiters from Lidov-Kozai oscillations in stellar binaries. Mon Not R Astron Soc 456(4):3671–3701. https://doi.org/10.1093/mnras/stv2906

    Article  ADS  Google Scholar 

  • Barker AJ, Ogilvie GI (2009) On the tidal evolution of hot Jupiters on inclined orbits. MNRAS 395:2268–2287

    Article  ADS  Google Scholar 

  • Barnes JW (2009) Transit lightcurves of extrasolar planets orbiting rapidly rotating stars. ApJ 705:683–692

    Article  ADS  Google Scholar 

  • Barnes JW, Linscott E, Shporer A (2011) Measurement of the spin-orbit misalignment of KOI-13.01 from its gravity-darkened Kepler transit lightcurve. ApJS 197:10

    Google Scholar 

  • Baruteau C, Crida A, Paardekooper SJ et al (2014) Planet-disk interactions and early evolution of planetary systems. In: Protostars and Planets VI, pp 667–689. http://muse.jhu.edu/book/35621

    Google Scholar 

  • Batygin K (2012) A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature 491:418–420

    Article  ADS  Google Scholar 

  • Batygin K, Bodenheimer PH, Laughlin GP (2016) In situ formation and dynamical evolution of hot Jupiter systems. ArXiv e-prints. https://doi.org/10.3847/0004-637X/829/2/114

  • Becker JC, Vanderburg A, Adams FC, Rappaport SA, Schwengeler HM (2015) WASP-47: a hot Jupiter system with two additional planets discovered by K2. ApJ 812:L18

    Article  ADS  Google Scholar 

  • Benomar O, Masuda K, Shibahashi H, Suto Y (2014) Determination of three-dimensional spin-orbit angle with joint analysis of asteroseismology, transit lightcurve, and the Rossiter-McLaughlin effect: cases of HAT-P-7 and Kepler-25. PASJ 66:94

    ADS  Google Scholar 

  • Bodenheimer P, Hubickyj O, Lissauer JJ (2000) Models of the in situ formation of detected extrasolar giant planets. Icarus 143:2–14

    Article  ADS  Google Scholar 

  • Bouchy F, Udry S, Mayor M et al. (2005) ELODIE metallicity-biased search for transiting hot Jupiters. II. A very hot Jupiter transiting the bright K star HD 189733. A&A 444:L15–L19

    Article  ADS  Google Scholar 

  • Boué G, Montalto M, Boisse I, Oshagh M, Santos NC (2013) New analytical expressions of the Rossiter-McLaughlin effect adapted to different observation techniques. A&A 550:A53

    Article  ADS  Google Scholar 

  • Bourrier V, Hébrard G (2014) Detecting the spin-orbit misalignment of the super-Earth 55 cancri e. A&A 569:A65

    Article  ADS  Google Scholar 

  • Bourrier V, Cegla HM, Lovis C, Wyttenbach A (2017) Refined architecture of the WASP-8 system: a cautionary tale for traditional Rossiter-McLaughlin analysis. A&A 599:A33

    Article  ADS  Google Scholar 

  • Brinch C, Jørgensen JK, Hogerheijde MR, Nelson RP, Gressel O (2016) Misaligned disks in the binary protostar IRS 43. ApJ 830:L16

    Article  ADS  Google Scholar 

  • Brogi M, Snellen IAG, de Kok RJ et al (2012) The signature of orbital motion from the dayside of the planet τ boötis b. Nature 486:502–504

    Article  ADS  Google Scholar 

  • Brogi M, de Kok RJ, Albrecht S et al (2016) Rotation and winds of exoplanet HD 189733 b measured with high-dispersion transmission spectroscopy. ApJ 817:106

    Article  ADS  Google Scholar 

  • Brown DJA, Collier Cameron A, Hall C, Hebb L, Smalley B (2011) Are falling planets spinning up their host stars? MNRAS 415:605–618

    Article  ADS  Google Scholar 

  • Brown DJA, Cameron AC, Anderson DR et al (2012a) Rossiter-McLaughlin effect measurements for WASP-16, WASP-25 and WASP-31. MNRAS 423:1503–1520

    Article  ADS  Google Scholar 

  • Brown DJA, Collier Cameron A, Díaz RF et al (2012b) Analysis of spin-orbit alignment in the WASP-32, WASP-38, and HAT-P-27/WASP-40 systems. ApJ 760:139

    Article  ADS  Google Scholar 

  • Brown DJA, Triaud AHMJ, Doyle AP et al. (2017) Rossiter-McLaughlin models and their effect on estimates of stellar rotation, illustrated using six WASP systems. MNRAS 464:810–839

    Article  ADS  Google Scholar 

  • Brucalassi A, Pasquini L, Saglia R et al (2016) Search for giant planets in M67. III. Excess of hot Jupiters in dense open clusters. A&A 592:L1

    Google Scholar 

  • Campante TL, Lund MN, Kuszlewicz JS et al (2016) Spin-orbit alignment of exoplanet systems: ensemble analysis using asteroseismology. ApJ 819:85

    Article  ADS  Google Scholar 

  • Cébron D, Bars ML, Gal PL et al (2013) Elliptical instability in hot Jupiter systems. Icarus 226:1642–1653

    Article  ADS  Google Scholar 

  • Cegla HM, Lovis C, Bourrier V et al (2016a) The Rossiter-McLaughlin effect reloaded: probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems. ArXiv e-prints. https://doi.org/10.1051/0004-6361/201527794

  • Cegla HM, Oshagh M, Watson CA et al (2016b) Modeling the Rossiter-McLaughlin effect: impact of the convective center-to-limb variations in the stellar photosphere. ApJ 819:67

    Article  ADS  Google Scholar 

  • Chaplin WJ, Miglio A (2013) Asteroseismology of solar-type and red-giant stars. ARA&A 51:353–392

    Article  ADS  Google Scholar 

  • Chaplin WJ, Sanchis-Ojeda R, Campante TL et al (2013) Asteroseismic determination of obliquities of the exoplanet systems Kepler-50 and Kepler-65. ApJ 766:101

    Article  ADS  Google Scholar 

  • Chatterjee S, Ford EB, Matsumura S, Rasio FA (2008) Dynamical outcomes of planet-planet scattering. ApJ 686:580–602

    Article  ADS  Google Scholar 

  • Chiang EI, Murray-Clay RA (2004) The circumbinary ring of KH 15D. ApJ 607:913–920

    Article  ADS  Google Scholar 

  • Cloutier R Triaud AHMJ (2016) Prospects for detecting the Rossiter-McLaughlin effect of Earth-like planets: the test case of TRAPPIST-1b and c. MNRAS 462:4018–4027

    Article  ADS  Google Scholar 

  • Collier Cameron A (1998) Stellar tomography. Ap&SS 261:71–80

    Article  ADS  Google Scholar 

  • Collier Cameron A, Bruce VA, Miller GRM, Triaud AHMJ, Queloz D (2010a) Line-profile tomography of exoplanet transits – I. The doppler shadow of HD 189733b. MNRAS 403:151–158

    Article  ADS  Google Scholar 

  • Collier Cameron A, Guenther E, Smalley B et al (2010b) Line-profile tomography of exoplanet transits - II. A gas-giant planet transiting a rapidly rotating A5 star. MNRAS 407:507–514

    Article  ADS  Google Scholar 

  • Covino E, Esposito M, Barbieri M et al (2013) The GAPS programme with HARPS-N at TNG. I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1. A&A 554:A28

    Google Scholar 

  • Crossfield IJM, Biller B, Schlieder JE et al (2014) A global cloud map of the nearest known brown dwarf. Nature 505:654–656

    Article  ADS  Google Scholar 

  • Dai F, Winn JN, Yu L Albrecht S (2017) The stellar obliquity, planet mass, and very low albedo of Qatar-2 from K2 photometry. AJ 153:40

    Article  ADS  Google Scholar 

  • Dawson RI (2014) On the tidal origin of hot Jupiter stellar obliquity trends. ApJ 790:L31

    Article  ADS  Google Scholar 

  • de Wit J, Wakeford HR, Gillon M et al (2016) A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537:69–72

    Article  ADS  Google Scholar 

  • Deming LD, Seager S (2017) Illusion and reality in the atmospheres of exoplanets. J Geophys Res (Planets) 122:53–75

    Article  ADS  Google Scholar 

  • Di Gloria E, Snellen IAG, Albrecht S (2015) Using the chromatic Rossiter-McLaughlin effect to probe the broadband signature in the optical transmission spectrum of HD 189733b. A&A 580:A84

    Article  ADS  Google Scholar 

  • Donati JF, Forveille T, Collier Cameron A et al (2006) The large-scale axisymmetric magnetic topology of a very-low-mass fully convective star. Science 311:633–635

    Article  ADS  Google Scholar 

  • Donati JF, Moutou C, Farès R et al (2008) Magnetic cycles of the planet-hosting star τ bootis. MNRAS 385:1179–1185

    Article  ADS  Google Scholar 

  • Dong S, Katz B, Socrates A et al (2013) Warm Jupiters need close “friends” for high-eccentricity migration—a stringent upper limit on the perturber’s separation. Astrophys J Lett 781(1)

    Google Scholar 

  • Doolin S, Blundell KM (2011) The dynamics and stability of circumbinary orbits. MNRAS 418:2656–2668

    Article  ADS  Google Scholar 

  • Doyle LR, Carter JA, Fabrycky DC et al (2011) Kepler-16: a transiting circumbinary planet. Science 333:1602

    Article  ADS  Google Scholar 

  • Esposito M, Covino E, Mancini L et al (2014) The GAPS programme with HARPS-N at TNG. III: the retrograde orbit of HAT-P-18b. A&A 564:L13

    Google Scholar 

  • Esposito M, Covino E, Desidera S et al (2017) The GAPS programme with HARPS-N at TNG. XIII. The orbital obliquity of three close-in massive planets hosted by dwarf K-type stars: WASP-43, HAT-P-20 and Qatar-2. A&A 601:A53

    Google Scholar 

  • Fabrycky D, Tremaine S (2007) Shrinking binary and planetary orbits by Kozai cycles with tidal friction. ApJ 669:1298–1315

    Article  ADS  Google Scholar 

  • Fabrycky DC, Winn JN (2009) Exoplanetary spin-orbit alignment: results from the ensemble of Rossiter-McLaughlin observations. ApJ 696:1230–1240

    Article  ADS  Google Scholar 

  • Ford EB (2005) Quantifying the uncertainty in the orbits of extrasolar planets. AJ 129:1706–1717

    Article  ADS  Google Scholar 

  • Ford EB (2006) Improving the efficiency of Markov chain monte carlo for analyzing the orbits of extrasolar planets. ApJ 642:505–522

    Article  ADS  Google Scholar 

  • Gandolfi D, Collier Cameron A, Endl M et al (2012) Doppler tomography of transiting exoplanets: a prograde, low-inclined orbit for the hot Jupiter CoRoT-11b. A&A 543:L5

    Article  ADS  Google Scholar 

  • Gaudi BS, Winn JN (2007) Prospects for the characterization and confirmation of transiting exoplanets via the Rossiter-McLaughlin effect. ApJ 655:550–563

    Article  ADS  Google Scholar 

  • Gaudi BS, Stassun KG, Collins KA et al (2017) A giant planet undergoing extreme-ultraviolet irradiation by its hot massive-star host. Nature 546:514–518

    ADS  Google Scholar 

  • Gillon M, Jehin E, Lederer SM et al (2016) Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533:221–224

    Article  ADS  Google Scholar 

  • Gillon M, Triaud AHMJ, Demory BO et al (2017) Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542:456–460

    Article  ADS  Google Scholar 

  • Giménez A (2006a) Equations for the analysis of the light curves of extra-solar planetary transits. A&A 450:1231–1237

    Article  ADS  Google Scholar 

  • Giménez A (2006b) Equations for the analysis of the Rossiter-MCLaughlin effect in extrasolar planetary transits. ApJ 650:408–413

    Article  ADS  Google Scholar 

  • Gizon L, Solanki SK (2003) Determining the inclination of the rotation axis of a sun-like star. ApJ 589:1009–1019

    Article  ADS  Google Scholar 

  • Goldreich P, Tremaine S (1980) Disk-satellite interactions. ApJ 241:425–441

    Article  ADS  MathSciNet  Google Scholar 

  • Greaves JS, Kennedy GM, Thureau N et al (2014) Alignment in star-debris disc systems seen by Herschel. MNRAS 438:L31–L35

    Article  ADS  Google Scholar 

  • Guillochon J, Ramirez-Ruiz E, Lin D (2011) Consequences of the ejection and disruption of giant planets. ApJ 732:74

    Article  ADS  Google Scholar 

  • Hale A (1994) Orbital coplanarity in solar-type binary systems: implications for planetary system formation and detection. AJ 107:306–332

    Article  ADS  Google Scholar 

  • Hébrard G, Bouchy F, Pont F et al (2008) Misaligned spin-orbit in the XO-3 planetary system? A&A 488:763–770

    Article  ADS  Google Scholar 

  • Hébrard G, Désert JM, Díaz RF et al (2010) Observation of the full 12-hour-long transit of the exoplanet HD 80606b. Warm-spitzer photometry and SOPHIE spectroscopy. A&A 516:A95

    Google Scholar 

  • Hébrard G, Ehrenreich D, Bouchy F et al (2011a) The retrograde orbit of the HAT-P-6b exoplanet. A&A 527:L11

    Article  ADS  Google Scholar 

  • Hébrard G, Evans TM, Alonso R et al (2011b) Transiting exoplanets from the CoRoT space mission. XVIII. CoRoT-18b: a massive hot Jupiter on a prograde, nearly aligned orbit. A&A 533:A130

    Google Scholar 

  • Hellier C, Anderson DR, Collier-Cameron A et al (2011) On the orbit of the short-period exoplanet WASP-19b. ApJ 730:L31

    Article  ADS  Google Scholar 

  • Hirano T, Narita N, Shporer A et al (2011a) A possible tilted orbit of the super-Neptune HAT-P-11b. PASJ 63:531–536

    Article  Google Scholar 

  • Hirano T, Suto Y, Winn JN et al (2011b) Improved modeling of the Rossiter-McLaughlin effect for transiting exoplanets. ApJ 742:69

    Article  ADS  Google Scholar 

  • Holt JR (1893) Spectroscopic determination of stellar rotation. Astro-Phys XII:646

    Google Scholar 

  • Hosokawa Y (1953) On the rotation effect of velocity curves in eclipsing binary systems. PASJ 5:88

    ADS  Google Scholar 

  • Huang C, Wu Y, Triaud AHMJ (2016) Warm Jupiters are less lonely than hot Jupiters: close neighbors. ApJ 825:98

    Article  ADS  Google Scholar 

  • Huber D, Carter JA, Barbieri M et al (2013) Stellar spin-orbit misalignment in a multiplanet system. Science 342:331–334

    Article  ADS  Google Scholar 

  • Jensen ELN Akeson R (2014) Misaligned protoplanetary disks in a young binary star system. Nature 511:567–569

    Article  ADS  Google Scholar 

  • Johnson JA, Winn JN, Albrecht S et al (2009) A third exoplanetary system with misaligned orbital and stellar spin axes. PASP 121:1104

    Article  ADS  Google Scholar 

  • Johnson MC, Cochran WD, Albrecht S et al (2014) A misaligned prograde orbit for Kepler-13 Ab via doppler tomography. ApJ 790:30

    Article  ADS  Google Scholar 

  • Johnson MC, Cochran WD, Collier Cameron A, Bayliss D (2015) Measurement of the nodal precession of WASP-33 b via doppler tomography. ApJ 810:L23

    Article  ADS  Google Scholar 

  • Kennedy GM, Wyatt MC, Sibthorpe B et al (2012) 99 Herculis: host to a circumbinary polar-ring debris disc. MNRAS 421:2264–2276

    Article  ADS  Google Scholar 

  • Kopal Z (1942) The calculation of rotation factors for eclipsing binary systems. Proc Nat Acad Sci 28:133–140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kopal Z (1959) Close binary systems. Chapman & Hall, London

    MATH  Google Scholar 

  • Kopal Z (ed) (1979) Language of the stars: a discourse on the theory of the light changes of eclipsing variables. Astrophysics and Space Science Library, vol 77. https://doi.org/10.1007/978-94-009-9466-9

  • Kostov VB, McCullough PR, Carter JA et al (2014) Kepler-413b: a slightly misaligned, Neptune-size transiting circumbinary planet. ApJ 784:14

    Article  ADS  Google Scholar 

  • Lai D (2014) Star-disc-binary interactions in protoplanetary disc systems and primordial spin-orbit misalignments. MNRAS 440:3532–3544

    Article  ADS  Google Scholar 

  • Lai D, Foucart F, Lin DNC (2011) Evolution of spin direction of accreting magnetic protostars and spin-orbit misalignment in exoplanetary systems. MNRAS 412:2790–2798

    Article  ADS  Google Scholar 

  • Le Bouquin JB, Absil O, Benisty M et al (2009) The spin-orbit alignment of the fomalhaut planetary system probed by optical long baseline interferometry. A&A 498:L41–L44

    Article  ADS  Google Scholar 

  • Lendl M, Triaud AHMJ, Anderson DR et al (2014) WASP-117b: a 10-day-period Saturn in an eccentric and misaligned orbit. A&A 568:A81

    Article  ADS  Google Scholar 

  • Lin DNC, Bodenheimer P, Richardson DC (1996) Orbital migration of the planetary companion of 51 Pegasi to its present location. Nature 380:606–607

    Article  ADS  Google Scholar 

  • López-Morales M, Triaud AHMJ, Rodler F et al (2014) Rossiter-McLaughlin Observations of 55 Cnc e. ApJ 792:L31

    Article  ADS  Google Scholar 

  • Louden T, Wheatley PJ (2015) Spatially resolved eastward winds and rotation of HD 189733b. ApJ 814:L24

    Article  ADS  Google Scholar 

  • Madhusudhan N, Mousis O, Johnson TV, Lunine JI (2011) Carbon-rich giant planets: atmospheric chemistry, thermal inversions, spectra, and formation conditions. ApJ 743:191

    Article  ADS  Google Scholar 

  • Madhusudhan N, Bitsch B, Johansen A, Eriksson L (2017) Atmospheric signatures of giant exoplanet formation by pebble accretion. MNRAS 469:4102–4115

    Article  ADS  Google Scholar 

  • Malmberg D, Davies MB, Heggie DC (2011) The effects of fly-bys on planetary systems. MNRAS 411:859–877

    Article  ADS  Google Scholar 

  • Mamajek EE, Hillenbrand LA (2008) Improved age estimation for solar-type dwarfs using activity-rotation diagnostics. ApJ 687:1264–1293

    Article  ADS  Google Scholar 

  • Mancini L, Southworth J, Ciceri S et al (2014) Physical properties, star-spot activity, orbital obliquity and transmission spectrum of the Qatar-2 planetary system from multicolour photometry. MNRAS 443:2391–2409

    Article  ADS  Google Scholar 

  • Marsh TR, Horne K (1988) Images of accretion discs. II – Doppler tomography. MNRAS 235: 269–286

    Google Scholar 

  • Martin DV, Triaud AHMJ (2014) Planets transiting non-eclipsing binaries. A&A 570:A91

    Article  ADS  Google Scholar 

  • Masuda K (2015) Spin-orbit angles of Kepler-13Ab and HAT-P-7b from gravity-darkened transit light curves. ApJ 805:28

    Article  ADS  Google Scholar 

  • Mayor M, Queloz D (1995) A Jupiter-mass companion to a solar-type star. Nature 378:355–359

    Article  ADS  Google Scholar 

  • Mazeh T, Perets HB, McQuillan A, Goldstein ES (2015) Photometric amplitude distribution of stellar rotation of KOIs – indication for spin-orbit alignment of cool stars and high obliquity for hot stars. ApJ 801:3

    Article  ADS  Google Scholar 

  • McLaughlin DB (1924) Some results of a spectrographic study of the algol system. ApJ 60:22–31

    Article  ADS  Google Scholar 

  • Molaro P, Monaco L, Barbieri M, Zaggia S (2013) Detection of the Rossiter-McLaughlin effect in the 2012 June 6 Venus transit. MNRAS 429:L79–L83

    Article  ADS  Google Scholar 

  • Moutou C, Hébrard G, Bouchy F et al (2009) Photometric and spectroscopic detection of the primary transit of the 111-day-period planet HD 80 606 b. A&A 498:L5–L8

    Article  ADS  Google Scholar 

  • Močnik T, Clark BJM, Anderson DR, Hellier C, Brown DJA (2016) Starspots on WASP-85. AJ 151:150

    Article  ADS  Google Scholar 

  • Nagasawa M, Ida S, Bessho T (2008) Formation of hot planets by a combination of planet scattering, tidal circularization, and the Kozai mechanism. ApJ 678:498–508

    Article  ADS  Google Scholar 

  • Naoz S, Farr WM, Lithwick Y, Rasio FA, Teyssandier J (2011) Hot Jupiters from secular planet-planet interactions. Nature 473:187–189

    Article  ADS  Google Scholar 

  • Naoz S, Farr WM Rasio FA (2012) On the formation of hot Jupiters in stellar binaries. ApJ 754:L36

    Article  ADS  Google Scholar 

  • Narita N, Sato B, Hirano T, Tamura M (2009) First evidence of a retrograde orbit of a transiting exoplanet HAT-P-7b. PASJ 61:L35–L40

    Article  ADS  Google Scholar 

  • Neveu-VanMalle M, Queloz D, Anderson DR et al (2016) Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47. A&A 586:A93

    Article  ADS  Google Scholar 

  • Nikolov N, Sainsbury-Martinez F (2015) Radial velocity eclipse mapping of exoplanets. ApJ 808:57

    Article  ADS  Google Scholar 

  • Nutzman PA, Fabrycky DC, Fortney JJ (2011) Using star spots to measure the spin-orbit alignment of transiting planets. ApJ 740:L10

    Article  ADS  Google Scholar 

  • Öberg KI, Murray-Clay R, Bergin EA (2011) The effects of snowlines on C/O in planetary atmospheres. ApJ 743:L16

    Article  ADS  Google Scholar 

  • Ohta Y, Taruya A, Suto Y (2005) The Rossiter-McLaughlin effect and analytic radial velocity curves for transiting extrasolar planetary systems. ApJ 622:1118–1135

    Article  ADS  Google Scholar 

  • Oshagh M, Boisse I, Boué G et al (2013) SOAP-T: a tool to study the light curve and radial velocity of a system with a transiting planet and a rotating spotted star. A&A 549:A35

    Article  ADS  Google Scholar 

  • Oshagh M, Dreizler S, Santos NC, Figueira P, Reiners A (2016) Can stellar activity make a planet seem misaligned? A&A 593:A25

    Article  ADS  Google Scholar 

  • Perryman M, Hartman J, Bakos GÁ, Lindegren L (2014) Astrometric Exoplanet Detection with Gaia. ApJ 797:14

    Article  ADS  Google Scholar 

  • Petrie RM (1938) The rotation effect in eclipsing binaries and stellar dimensions. JRASC 32:257

    ADS  Google Scholar 

  • Petrovich C (2015a) Hot Jupiters from coplanar high-eccentricity migration. ApJ 805:75

    Article  ADS  Google Scholar 

  • Petrovich C (2015b) Steady-state planet migration by the Kozai-Lidov mechanism in stellar binaries. ApJ 799:27

    Article  ADS  Google Scholar 

  • Pont F, Gilliland RL, Moutou C et al (2007) Hubble space telescope time-series photometry of the planetary transit of HD 189733: no moon, no rings, starspots. A&A 476:1347–1355

    Article  ADS  Google Scholar 

  • Queloz D, Eggenberger A, Mayor M et al (2000) Detection of a spectroscopic transit by the planet orbiting the star HD209458. A&A 359:L13–L17

    ADS  Google Scholar 

  • Queloz D, Anderson D, Collier Cameron A et al (2010) WASP-8b: a retrograde transiting planet in a multiple system. A&A 517:L1

    Article  ADS  Google Scholar 

  • Rafikov RR (2006) Atmospheres of protoplanetary cores: critical mass for nucleated instability. ApJ 648:666–682

    Article  ADS  Google Scholar 

  • Rasio FA, Ford EB (1996) Dynamical instabilities and the formation of extrasolar planetary systems. Science 274:954–956

    Article  ADS  Google Scholar 

  • Rauer H, Catala C, Aerts C et al (2014) The PLATO 2.0 mission. Exp Astron 38:249–330

    Article  ADS  Google Scholar 

  • Reiners A, Lemke U, Bauer F, Beeck B, Huke P (2016) Radial velocity observations of the 2015 Mar. 20 eclipse. A benchmark Rossiter-McLaughlin curve with zero free parameters. A&A 595:A26

    Google Scholar 

  • Richards MT, Albright GE, Bowles LM (1995) Doppler tomography of the gas stream in short-period algol binaries. ApJ 438:L103–L106

    Article  ADS  Google Scholar 

  • Richards MT, Cocking AS, Fisher JG, Conover MJ (2014) Images of gravitational and magnetic phenomena derived from two-dimensional back-projection doppler tomography of interacting binary stars. ApJ 795:160

    Article  ADS  Google Scholar 

  • Rodler F, Lopez-Morales M, Ribas I (2012) Weighing the non-transiting hot Jupiter τ boo b. ApJ 753:L25

    Article  ADS  Google Scholar 

  • Rogers TM, Lin DNC, McElwaine JN, Lau HHB (2013) Internal gravity waves in massive stars: angular momentum transport. ApJ 772:21

    Article  ADS  Google Scholar 

  • Rossiter RA (1924) On the detection of an effect of rotation during eclipse in the velocity of the brigher component of beta Lyrae, and on the constancy of velocity of this system. ApJ 60:15–21

    Article  ADS  Google Scholar 

  • Sahlmann J, Lovis C, Queloz D, Ségransan D (2011) HD 5388 b is a 69 M Jup companion instead of a planet. A&A 528:L8

    Article  ADS  Google Scholar 

  • Sahlmann J, Triaud AHMJ, Martin DV (2015) Gaia’s potential for the discovery of circumbinary planets. MNRAS 447:287–297

    Article  ADS  Google Scholar 

  • Sanchis-Ojeda R, Winn JN (2011) Starspots, spin-orbit misalignment, and active latitudes in the HAT-P-11 exoplanetary system. ApJ 743:61

    Article  ADS  Google Scholar 

  • Sanchis-Ojeda R, Winn JN, Holman MJ et al (2011) Starspots and spin-orbit alignment in the WASP-4 exoplanetary system. ApJ 733:127

    Article  ADS  Google Scholar 

  • Sanchis-Ojeda R, Fabrycky DC, Winn JN et al (2012) Alignment of the stellar spin with the orbits of a three-planet system. Nature 487:449–453

    Article  ADS  Google Scholar 

  • Santerne A, Moutou C, Tsantaki M et al (2016) SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. A&A 587:A64

    Google Scholar 

  • Schlaufman KC (2010) Evidence of possible spin-orbit misalignment along the line of sight in transiting exoplanet systems. ApJ 719:602–611

    Article  ADS  Google Scholar 

  • Schlesinger F (1910) The algol-variable [delta] Librae. Publications of the Allegheny Observatory of the University of Pittsburgh 1:123–134

    ADS  Google Scholar 

  • Schneider J (1994) On the occultations of a binary star by a circum-orbiting dark companion. Planet Space Sci 42:539–544

    Article  ADS  Google Scholar 

  • Seager S, Deming D (2010) Exoplanet atmospheres. ARA&A 48:631–672

    Article  ADS  Google Scholar 

  • Shporer A, Brown T (2011) The impact of the convective blueshift effect on spectroscopic planetary transits. ApJ 733:30

    Article  ADS  Google Scholar 

  • Snellen IAG (2004) A new method for probing the atmospheres of transiting exoplanets. MNRAS 353:L1–L6

    Article  ADS  Google Scholar 

  • Snellen IAG, de Kok RJ, de Mooij EJW, Albrecht S (2010) The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465:1049–1051

    Article  ADS  Google Scholar 

  • Snellen IAG, Brandl BR, de Kok RJ et al (2014) Fast spin of the young extrasolar planet β pictoris b. Nature 509:63–65

    Article  ADS  Google Scholar 

  • Southworth J (2011) Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves. MNRAS 417:2166–2196

    Google Scholar 

  • Sullivan PW, Winn JN, Berta-Thompson ZK et al (2015) The transiting exoplanet survey satellite: simulations of planet detections and astrophysical false positives. ApJ 809:77

    Article  ADS  Google Scholar 

  • Szabó GM, Szabó R, Benkő JM et al (2011) Asymmetric transit curves as indication of orbital obliquity: clues from the late-type dwarf companion in KOI-13. ApJ 736:L4

    Article  ADS  Google Scholar 

  • Temple LY, Hellier C, Albrow MD et al (2017) WASP-167b/KELT-13b: joint discovery of a hot Jupiter transiting a rapidly-rotating F1V star. ArXiv e-prints. https://doi.org/10.1093/mnras/stx1729

  • Terquem C (2013) The effects of disc warping on the inclination of planetary orbits. MNRAS 435:798–808

    Google Scholar 

  • Terquem C, Ajmia A (2010) Eccentricity pumping of a planet on an inclined orbit by a disc. MNRAS 404:409–414

    ADS  Google Scholar 

  • Triaud A (2016) Exoplanets: migration of giants. Nature 537:496–497

    Article  ADS  Google Scholar 

  • Triaud AHMJ (2011a) Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets. PhD thesis, Observatoire Astronomique de l’Universite de Geneve, http://archive-ouverte.unige.ch/unige:18065

  • Triaud AHMJ (2011b) The time dependence of hot Jupiters’ orbital inclinations. A&A 534:L6

    Article  ADS  Google Scholar 

  • Triaud AHMJ (2014) Colour-magnitude diagrams of transiting Exoplanets – I. Systems with parallaxes. MNRAS 439:L61–L64

    Google Scholar 

  • Triaud AHMJ, Queloz D, Bouchy F et al (2009) The Rossiter-McLaughlin effect of CoRoT-3b and HD 189733b. A&A 506:377–384

    Article  ADS  Google Scholar 

  • Triaud AHMJ, Collier Cameron A, Queloz D et al (2010) Spin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters. A&A 524:A25

    Google Scholar 

  • Triaud AHMJ, Queloz D, Hellier C et al (2011) WASP-23b: a transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect. A&A 531:A24

    Article  ADS  Google Scholar 

  • Triaud AHMJ, Hebb L, Anderson DR et al (2013) The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit. A&A 549:A18

    Google Scholar 

  • Triaud AHMJ, Gillon M, Ehrenreich D et al (2015) WASP-80b has a dayside within the T-dwarf range. MNRAS 450:2279–2290

    Article  ADS  Google Scholar 

  • Triaud AHMJ, Martin DV, Ségransan D et al (2017a, in press) The EBLM project IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot-Jupiters. ArXiv e-prints

    Google Scholar 

  • Triaud AHMJ, Neveu-VanMalle M, Lendl M et al (2017b) Peculiar architectures for the WASP-53 and WASP-81 planet-hosting systems. MNRAS 467:1714–1733

    ADS  Google Scholar 

  • Van Eylen V, Lund MN, Silva Aguirre V et al (2014) What asteroseismology can do for exoplanets: Kepler-410A b is a small Neptune around a bright star, in an eccentric orbit consistent with low obliquity. ApJ 782:14

    Article  ADS  Google Scholar 

  • Ward WR (1997) Protoplanet migration by nebula tides. Icarus 126:261–281

    Article  ADS  Google Scholar 

  • Watson CA, Littlefair SP, Diamond C et al (2011) On the alignment of debris discs and their host stars’ rotation axis – implications for spin-orbit misalignment in exoplanetary systems. MNRAS 413:L71–L75

    Article  ADS  Google Scholar 

  • Winn JN, Fabrycky DC (2015) The occurrence and architecture of exoplanetary systems. ARA&A 53:409–447

    Article  ADS  Google Scholar 

  • Winn JN, Hamilton CM, Herbst WJ et al (2006) The orbit and occultations of KH 15D. ApJ 644:510–524

    Article  ADS  Google Scholar 

  • Winn JN, Johnson JA, Albrecht S et al (2009) HAT-P-7: a retrograde or polar orbit, and a third body. ApJ 703:L99–L103

    Article  ADS  Google Scholar 

  • Winn JN, Fabrycky D, Albrecht S, Johnson JA (2010a) Hot stars with hot Jupiters have high obliquities. ApJ 718:L145–L149

    Article  ADS  Google Scholar 

  • Winn JN, Johnson JA, Howard AW et al (2010b) The oblique orbit of the super-Neptune HAT-P-11b. ApJ 723:L223–L227

    Article  ADS  Google Scholar 

  • Winn JN, Albrecht S, Johnson JA et al (2011) Spin-orbit alignment for the circumbinary planet host Kepler-16 A. ApJ 741:L1

    Article  ADS  Google Scholar 

  • Wittenmyer RA, Welsh WF, Orosz JA et al (2005) System parameters of the transiting extrasolar planet HD 209458b. ApJ 632:1157–1167

    Article  ADS  Google Scholar 

  • Wood PL, Maxted PFL, Smalley B, Iro N (2011) Transmission spectroscopy of the sodium ’D’ doublet in WASP-17b with the VLT. MNRAS 412:2376–2382

    Article  ADS  Google Scholar 

  • Wu Y, Lithwick Y (2011) Secular chaos and the production of hot Jupiters. ApJ 735:109

    Article  ADS  Google Scholar 

  • Wu Y, Murray NW, Ramsahai JM (2007) Hot Jupiters in binary star systems. ApJ 670:820–825

    Article  ADS  Google Scholar 

  • Wyttenbach A, Lovis C, Ehrenreich D et al (2017) Hot exoplanet atmospheres resolved with transit spectroscopy (HEARTS). I. Detection of hot neutral sodium at high altitudes on WASP-49b. A&A 602:A36

    Google Scholar 

  • Yan F, Fosbury RAE, Petr-Gotzens MG, Pallé E, Zhao G (2015) Using the Rossiter-McLaughlin effect to observe the transmission spectrum of Earth’s atmosphere. ApJ 806:L23

    Article  ADS  Google Scholar 

  • Zahn JP (1977) Tidal friction in close binary stars. A&A 57:383–394

    ADS  Google Scholar 

  • Zhou G, Bayliss D, Hartman JD et al (2015) A high obliquity orbit for the hot-Jupiter HATS-14b transiting a 5400K star. ApJ 814:L16

    Article  ADS  Google Scholar 

  • Zhou G, Latham DW, Bieryla A et al (2016a) Spin-orbit alignment for KELT-7b and HAT-P-56b via doppler tomography with TRES. MNRAS 460:3376–3383

    Article  ADS  Google Scholar 

  • Zhou G, Rodriguez JE, Collins KA et al (2016b) KELT-17b: a hot-Jupiter transiting an a-star in a misaligned orbit detected with doppler tomography. AJ 152:136

    Article  ADS  Google Scholar 

  • Zhuang Q, Gao X Yu Q (2012) The Rossiter-McLaughlin effect for exomoons or binary planets. ApJ 758:111

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaury H. M. J. Triaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Triaud, A.H.M.J. (2017). The Rossiter–McLaughlin Effect in Exoplanet Research. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics