Skip to main content

Earth: Atmospheric Evolution of a Habitable Planet

  • Living reference work entry
  • First Online:
Handbook of Exoplanets

Abstract

Our present-day atmosphere is often used as analog for potentially habitable exoplanets, but Earth’s atmosphere has changed dramatically throughout its 4.5-billion-year history. For example, molecular oxygen is abundant in the atmosphere today but was absent on the early Earth. Meanwhile, the physical and chemical evolution of Earth’s atmosphere has also resulted in major swings in surface temperature, at times resulting in extreme glaciation or warm greenhouse climates. Despite this dynamic and occasionally dramatic history, the Earth has been persistently habitable – and, in fact, inhabited – for roughly four billion years. Understanding Earth’s momentous changes and its enduring habitability is essential as a guide to the diversity of habitable planetary environments that may exist beyond our solar system and for ultimately recognizing spectroscopic fingerprints of life elsewhere in the universe.

Here, we review long-term trends in the composition of Earth’s atmosphere as it relates to both planetary habitability and inhabitation. We focus on gases that may serve as habitability markers (CO2, N2) or biosignatures (CH4, O2), especially as related to the redox evolution of the atmosphere and the coupled evolution of Earth’s climate system. We emphasize that in the search for Earth-like planets, we must be mindful that the example provided by the modern atmosphere merely represents a single snapshot of Earth’s long-term evolution. In exploring the many former states of our own planet, we emphasize Earth’s atmospheric evolution during the Archean, Proterozoic, and Phanerozoic eons, but we conclude with a brief discussion of potential atmospheric trajectories into the distant future, many millions to billions of years from now. All of these “alternative Earth” scenarios provide insight to the potential diversity of Earth-like, habitable, and inhabited worlds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Download references

Acknowledgments

The authors gratefully acknowledge the support from the NASA Astrobiology Institute, including support from the Alternative Earths team under Cooperative Agreement Number NNA15BB03A and the Virtual Planetary Laboratory under Cooperative Agreement Number NNA13AA93A. EWS also acknowledges support from the NASA Postdoctoral Program, administered by the Universities Space Research Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Olson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Olson, S.L., Schwieterman, E.W., Reinhard, C.T., Lyons, T.W. (2018). Earth: Atmospheric Evolution of a Habitable Planet. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_189-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_189-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics