Skip to main content

Visual Perception Disturbances in Schizophrenia: A Unified Model

  • Chapter
  • First Online:
The Neuropsychopathology of Schizophrenia

Part of the book series: Nebraska Symposium on Motivation ((NSM,volume 63))

Abstract

The purpose of this chapter is to demonstrate that the study of visual processing abnormalities in schizophrenia offers a unifying perspective on the etiology, development, pathophysiology, and course of the disorder. This chapter contains six sections. In the first, I provide a brief overview of the importance and promise of studying vision in schizophrenia. In the second, I provide examples of altered visual experience, in multiple aspects of vision, as reported by patients. The third reviews research and controversies related to the most prominent schizophrenia-related visual task deficits, including their psychophysiological and neurobiological aspects. In the fourth, I introduce the construct of contextual modulation and discuss how excesses and reductions in components of this function, in addition to changes in overall level of stimulus sensitivity, can account for many of the visual task deficits associated with schizophrenia. Informed by all of this evidence, I then briefly return to the issue of what the world looks and feels like for people with schizophrenia, and how this may change across illness phases. The paper concludes with a section on future directions for research in the area of vision and schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paraphrased from a comment at a research conference and a comment from a reviewer at a grant review meeting.

  2. 2.

    Because contrast sensitivity and spatial frequency processing are typically measured together (e.g., contrast sensitivity is measured across a range of spatial frequencies), there is some overlap in the findings presented in the first two sections.

  3. 3.

    O’Donnell et al. (2006) reported no differences between medicated and unmedicated schizophrenia patients. However, these were all chronic patients, and chronic patients withdrawn from medication may differ significantly from untreated high-risk and first episode patients, in terms of illness progression over time, and effects of years of prior medication treatment. Also, in this study, the average time since medication cessation was only 20 days, and this may not be enough time to for changes in dopaminergic tone, that might affect task performance, to occur.

  4. 4.

    For the purposes of this paper, the term gain refers to the rate at which output strength increases with input strength (e.g., the slope of a psychometric function, as opposed to its offset or threshold). Gain control refers to adjustments made to perceived stimulus intensity to keep it within a range that is useful but also tolerable to the organism. So, for example, in typical systems, weak signals are enhanced to a greater degree than are strong signals. An aspect of gain control is that the activity that implements the modulation would not produce significant output by itself, but can have a large effect given the presence of another signal.

  5. 5.

    Responses to these criticisms were published by Butler et al. (2007) and Keri and Benedek (2012).

  6. 6.

    Surround suppression in vision refers to the effects on receptive field functioning of stimuli outside of the classical receptive field. It is often operationalized as cases wherein the perception of a central patch is altered based on the nature of a surrounding patch (see Fig. 8). For example, a dark patch embedded in a lighter surround will appear darker than when it is perceived alone. However, the same patch would appear to be lighter if surrounded by a darker annulus. Similarly, an inner patch of coherent motion signals will appear to be moving faster if surrounded by a ring of motion signals moving in the opposite direction, but slower if surrounded by cues moving in the same direction. See also discussion of the Ebbinghaus illusion below for an example in the size domain.

  7. 7.

    With the possible exception of autism. However, in autism it has been argued that performance may be driven by excessive processing of local detail (Dakin & Frith, 2005) rather than a reduced ability to group elements into perceptual wholes.

  8. 8.

    Although human infants are sensitive to the hollow mask illusion (Corrow, Granrud, Mathison, & Yonas, 2011), suggesting that this effect is innate, they are not affected by manipulations involving familiarity, such as face inversion (Corrow, Mathison, Granrud, & Yonas, 2014), which affect the performance of adults (Papathomas & Bono, 2004), and which suggest top-down effects. Therefore, the hollow mask illusion may involve a combination of innate effects to perceive stimuli as convex, and learned effects specific to faces or overlearned stimuli in general. In both cases, however, the issue is that perception has been driven by what has been adaptive in either the past of the individual or the species. For a view of perception heavily based on the view that it is determined largely by what has been adaptive over the course of the evolutionary history of the species, see Lotto and Purves (2001), Purves, Lotto, Williams, Nundy, and Yang (2001), and Purves, Wojtach, and Lotto (2011). In the case of some other illusions, however, learning throughout childhood appears to drive the effect (see below).

  9. 9.

    Retinal input provides only 5–10 % of input to relay cells in the lateral geniculate nuclei of the thalamus. Most of the remainder are modulatory, and are local and GABAergic, or from cortical and brainstem inputs (Guillery & Sherman, 2002; Sherman & Guillery, 2002; Van Horn, Erisir, & Sherman, 2000; Vitay & Hamker, 2007). This demonstrates the massive role of modulatory processes in shaping the visual information that reaches the cortex.

  10. 10.

    Multiple studies indicate loss of gray and white matter, and/or reduced occipital volume, and/or increased gyrification (suggesting abnormal neurodevelopment) in early visual areas in people with schizophrenia (Dorph-Petersen, Pierri, Wu, Sampson, & Lewis, 2007; Schultz et al., 2013; Selemon, Rajkowska, & Goldman-Rakic, 1995), especially in chronically ill patients with poor functioning (Mitelman & Buchsbaum, 2007; Onitsuka et al., 2006, 2007). Note that it is this poor outcome group that typically demonstrates the most severe deficits on mid-level perceptual tasks (Knight, 1984, 1992; Knight & Silverstein, 1998; Silverstein & Keane, 2011a). However, the relationships between occipital structural changes and visual perceptual changes in schizophrenia have yet to be investigated. One hypothesis related to this chapter is that a reduction in occipital neurons leads to reduced gain.

  11. 11.

    See Phillips (Submitted) for a discussion of the similarities and differences between CM and Bayesian processing views.

  12. 12.

    For example, it has already been demonstrated that visual processing changes in depression lead to patients experiencing the world as more blue and gray than other people (Bubl, Kern, Ebert, Bach, & Tebartz van Elst, 2010; Bubl, Tebartz Van Elst, Gondan, Ebert, & Greenlee, 2009).

  13. 13.

    The multiple lines of evidence indicating altered structure and function of the retina in schizophrenia were recently reviewed in Silverstein and Rosen (2015) and will not be discussed here. This evidence suggests both: (1) excessive retinal signaling related to elevated dopaminergic and glutamatergic drive in early schizophrenia; and (2) loss of structure and function secondary to more chronic illness and to antipsychotic medication use, leading to weakened and noisier retinal signaling over time. The contributions of altered retinal signaling to visual perception disturbances in schizophrenia, and to altered gain and contextual modulation therein, have yet to be explored, however.

References

  • Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychology, 4, 47. doi:10.3389/fpsyt.2013.00047.

    Google Scholar 

  • Adesnik, H., Bruns, W., Taniguchi, H., Huang, Z. J., & Scanziani, M. (2012). A neural circuit for spatial summation in visual cortex. Nature, 490(7419), 226–231. doi:10.1038/nature11526.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altmann, C. F., Bulthoff, H. H., & Kourtzi, Z. (2003). Perceptual organization of local elements into global shapes in the human visual cortex. Current Biology, 13(4), 342–349. doi: S0960982203000526 [pii].

    Article  PubMed  Google Scholar 

  • Anticevic, A., Corlett, P. R., Cole, M. W., Savic, A., Gancsos, M., Tang, Y., … Krystal, J. H. (2015). N-methyl-D-aspartate receptor antagonist effects on prefrontal cortical connectivity better model early than chronic schizophrenia. Biological Psychiatry, 77(6), 569–580. doi: 10.1016/j.biopsych.2014.07.022.

    Google Scholar 

  • Ashby, F. G., Valentin, V. V., & von Meer, S. S. (2015). Differential effects of dopamine-directed treatments on cognition. Neuropsychiatric Disease and Treatment, 11, 1859–1875.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atallah, B. V., Bruns, W., Carandini, M., & Scanziani, M. (2012). Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron, 73(1), 159–170. doi:10.1016/j.neuron.2011.12.013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Backman, L., Nyberg, L., Lindenberger, U., Li, S. C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience and Biobehavioral Reviews, 30(6), 791–807. doi:10.1016/j.neubiorev.2006.06.005.

    Article  PubMed  Google Scholar 

  • Barch, D. M., Carter, C. S., Dakin, S. C., Gold, J., Luck, S. J., Macdonald, A., III, … Strauss, M. E. (2012). The clinical translation of a measure of gain control: The contrast-contrast effect task. Schizophrenia Bulletin, 38(1), 135–143. doi: 10.1093/schbul/sbr154.

    Google Scholar 

  • Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J. M., Oostenveld, R., Dowdall, J. R., … Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85(2), 390–401. doi: 10.1016/j.neuron.2014.12.018.

    Google Scholar 

  • Bayerl, P., & Neumann, H. (2004). Disambiguating visual motion through contextual feedback modulation. Neural Computation, 16(10), 2041–2066. doi:10.1162/0899766041732404.

    Article  PubMed  Google Scholar 

  • Behabadi, B. F., Polsky, A., Jadi, M., Schiller, J., & Mel, B. W. (2012). Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS Computational Biology, 8(7), e1002599. doi:10.1371/journal.pcbi.1002599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell, A. B. (2006). George Inness: Writings and reflections on art and philosophy. New York, NY: George Braziller.

    Google Scholar 

  • Black, J. E., Kodish, I. M., Grossman, A. W., Klintsova, A. Y., Orlovskaya, D., Vostrikov, V., … Greenough, W. T. (2004). Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. American Journal of Psychiatry, 161(4), 742–744.

    Google Scholar 

  • Blakemore, S. J., Smith, J., Steel, R., Johnstone, C. E., & Frith, C. D. (2000). The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: Evidence for a breakdown in self-monitoring. Psychological Medicine, 30(5), 1131–1139.

    Article  PubMed  Google Scholar 

  • Bodis-Wollner, I. (1990). Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends in Neurosciences, 13(7), 296–302.

    Article  PubMed  Google Scholar 

  • Bodis-Wollner, I., & Tzelepi, A. (1998). The push-pull action of dopamine on spatial tuning of the monkey retina: The effects of dopaminergic deficiency and selective D1 and D2 receptor ligands on the pattern electroretinogram. Vision Research, 38(10), 1479–1487.

    Article  PubMed  Google Scholar 

  • Brandies, R., & Yehuda, S. (2008). The possible role of retinal dopaminergic system in visual performance. Neuroscience and Biobehavioral Reviews, 32(4), 611–656. doi:10.1016/j.neubiorev.2007.09.004.

    Article  PubMed  Google Scholar 

  • Braun, J. (1999). On the detection of salient contours. Spatial Vision, 12(2), 211–225.

    Article  PubMed  Google Scholar 

  • Brda, D., & Tang, E. C. (2011). Visual hallucinations from retinal detachment misdiagnosed as psychosis. Journal of Psychiatric Practice, 17(2), 133–136. doi:10.1097/01.pra.0000396066.79719.c5.

    Article  PubMed  Google Scholar 

  • Brittain, P. J., Surguladze, S., McKendrick, A. M., & Ffytche, D. H. (2010). Backward and forward visual masking in schizophrenia and its relation to global motion and global form perception. Schizophrenia Research, 124(1–3), 134–141. doi:10.1016/j.schres.2010.07.008.

    Article  PubMed  Google Scholar 

  • Bubl, E., Kern, E., Ebert, D., Bach, M., & Tebartz van Elst, L. (2010). Seeing gray when feeling blue? Depression can be measured in the eye of the diseased. Biological Psychiatry, 68(2), 205–208. doi:10.1016/j.biopsych.2010.02.009.

    Article  PubMed  Google Scholar 

  • Bubl, E., Tebartz Van Elst, L., Gondan, M., Ebert, D., & Greenlee, M. W. (2009). Vision in depressive disorder. World Journal of Biological Psychiatry, 10(4 Pt 2), 377–384. doi:10.1080/15622970701513756.

    Article  PubMed  Google Scholar 

  • Bulens, C., Meerwaldt, J. D., van der Wildt, G. J., & Keemink, C. J. (1989). Visual contrast sensitivity in drug-induced Parkinsonism. Journal of Neurology, Neurosurgery, and Psychiatry, 52(3), 341–345.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunney, W. E., Jr., Hetrick, W. P., Bunney, B. G., Patterson, J. V., Jin, Y., Potkin, S. G., & Sandman, C. A. (1999). Structured interview for assessing perceptual anomalies (SIAPA). Schizophrenia Bulletin, 25(3), 577–592.

    Google Scholar 

  • Butler, P. D., Abeles, I. Y., Silverstein, S. M., Dias, E. C., Weiskopf, N. G., Calderone, D. J., & Sehatpour, P. (2013). An event-related potential examination of contour integration deficits in schizophrenia. Frontiers in Psychology, 4, 132. doi: 10.3389/fpsyg.2013.00132.

  • Butler, P. D., Abeles, I. Y., Weiskopf, N. G., Tambini, A., Jalbrzikowski, M., Legatt, M. E., … Javitt, D. C. (2009). Sensory contributions to impaired emotion processing in schizophrenia. Schizophrenia Bulletin, 35(6), 1095–1107. doi: 10.1093/schbul/sbp109.

    Google Scholar 

  • Butler, P. D., Chen, Y., Ford, J. M., Geyer, M. A., Silverstein, S. M., & Green, M. F. (2012). Perceptual measurement in schizophrenia: Promising electrophysiology and neuroimaging paradigms from CNTRICS. Schizophrenia Bulletin, 38(1), 81–91. doi:10.1093/schbul/sbr106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler, P. D., Martinez, A., Foxe, J. J., Kim, D., Zemon, V., Silipo, G., … Javitt, D. C. (2007). Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments. Brain, 130(Pt 2), 417–430. doi: 10.1093/brain/awl233.

    Google Scholar 

  • Butler, P. D., Silverstein, S. M., & Dakin, S. C. (2008). Visual perception and its impairment in schizophrenia. Biological Psychiatry, 64(1), 40–47. doi:10.1016/j.biopsych.2008.03.023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Butler, P. D., Zemon, V., Schechter, I., Saperstein, A. M., Hoptman, M. J., Lim, K. O., … Javitt, D. C. (2005). Early-stage visual processing and cortical amplification deficits in schizophrenia. Archives of General Psychiatry, 62(5), 495–504. doi: 10.1001/archpsyc.62.5.495.

    Google Scholar 

  • Buzsaki, G. (2006). Rhythms of the brain. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Cadenhead, K. S., Dobkins, K., McGovern, J., & Shafer, K. (2013). Schizophrenia spectrum participants have reduced visual contrast sensitivity to chromatic (red/green) and luminance (light/dark) stimuli: New insights into information processing, visual channel function, and antipsychotic effects. Frontiers in Psychology, 4, 535. doi:10.3389/fpsyg.2013.00535.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadenhead, K. S., Serper, Y., & Braff, D. L. (1998). Transient versus sustained visual channels in the visual backward masking deficits of schizophrenia patients. Biological Psychiatry, 43(2), 132–138. doi:10.1016/S0006-3223(97)00316-8.

    Article  PubMed  Google Scholar 

  • Calderone, D. J., Hoptman, M. J., Martinez, A., Nair-Collins, S., Mauro, C. J., Bar, M., … Butler, P. D. (2013). Contributions of low and high spatial frequency processing to impaired object recognition circuitry in schizophrenia. Cerebral Cortex, 23(8), 1849–1858. doi: 10.1093/cercor/bhs169.

    Google Scholar 

  • Calderone, D. J., Martinez, A., Zemon, V., Hoptman, M. J., Hu, G., Watkins, J. E., … Butler, P. D. (2013). Comparison of psychophysical, electrophysiological, and fMRI assessment of visual contrast responses in patients with schizophrenia. Neuroimage, 67, 153–162. doi: 10.1016/j.neuroimage.2012.11.019.

    Google Scholar 

  • Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., … Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663–667. doi: 10.1038/nature08002.

    Google Scholar 

  • Carr, V., & Wale, J. (1986). Schizophrenia: an information processing model. The Australian and New Zealand Journal of Psychiatry, 20(2), 136–155.

    Article  PubMed  Google Scholar 

  • Castellano, M., Plochl, M., Vicente, R., & Pipa, G. (2014). Neuronal oscillations form parietal/frontal networks during contour integration. Frontiers in Integrative Neuroscience, 8, 64. doi:10.3389/fnint.2014.00064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cepeda, C., Andre, V. M., Jocoy, E. L., & Levine, M. S. (2009). NMDA and dopamine: Diverse mechanisms applied to interacting receptor systems. In A. M. Van Dongen (Ed.), Biology of the NMDA receptor. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Chandna, A., Pennefather, P. M., Kovacs, I., & Norcia, A. M. (2001). Contour integration deficits in anisometropic amblyopia. Investigative Ophthalmology & Visual Science, 42(3), 875–878.

    Google Scholar 

  • Chapman, J. (1966). The early symptoms of schizophrenia. British Journal of Psychiatry, 112(484), 225–251.

    Article  PubMed  Google Scholar 

  • Chawla, D., Lumer, E. D., & Friston, K. J. (1999). The relationship between synchronization among neuronal populations and their mean activity levels. Neural Computation, 11(6), 1389–1411.

    Article  PubMed  Google Scholar 

  • Chechile, R. A., Anderson, J. E., Krafczek, S. A., & Coley, S. L. (1996). A syntactic complexity effect with visual patterns: Evidence for the syntactic nature of the memory representation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(3), 654–669.

    PubMed  Google Scholar 

  • Chen, Y. (2011). Abnormal visual motion processing in schizophrenia: A review of research progress. Schizophrenia Bulletin, 37(4), 709–715. doi:10.1093/schbul/sbr020.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Levy, D. L., Sheremata, S., & Holzman, P. S. (2004). Compromised late-stage motion processing in schizophrenia. Biological Psychiatry, 55(8), 834–841. doi:10.1016/j.biopsych.2003.12.024.

    Article  PubMed  Google Scholar 

  • Chen, Y., Levy, D. L., Sheremata, S., Nakayama, K., Matthysse, S., & Holzman, P. S. (2003). Effects of typical, atypical, and no antipsychotic drugs on visual contrast detection in schizophrenia. The American Journal of Psychiatry, 160(10), 1795–1801.

    Article  PubMed  Google Scholar 

  • Chen, Y., McBain, R., Norton, D., & Ongur, D. (2011). Schizophrenia patients show augmented spatial frame illusion for visual and visuomotor tasks. Neuroscience, 172, 419–426. doi:10.1016/j.neuroscience.2010.10.039.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Nakayama, K., Levy, D., Matthysse, S., & Holzman, P. (2003). Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research, 61(2–3), 215–227.

    Article  PubMed  Google Scholar 

  • Chen, Y., Norton, D., & Ongur, D. (2008). Altered center-surround motion inhibition in schizophrenia. Biological Psychiatry, 64(1), 74–77. doi:10.1016/j.biopsych.2007.11.017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, M., Yan, Y., Gong, X., Gilbert, C. D., Liang, H., & Li, W. (2014). Incremental integration of global contours through interplay between visual cortical areas. Neuron, 82(3), 682–694. doi:10.1016/j.neuron.2014.03.023.

    Article  PubMed  Google Scholar 

  • Chey, J., & Holzman, P. S. (1997). Perceptual organization in schizophrenia: Utilization of the Gestalt principles. Journal of Abnormal Psychology, 106(4), 530–538.

    Article  PubMed  Google Scholar 

  • Ciaramelli, E., Leo, F., Del Viva, M. M., Burr, D. C., & Ladavas, E. (2007). The contribution of prefrontal cortex to global perception. Experimental Brain Research, 181(3), 427–434. doi:10.1007/s00221-007-0939-7.

    Article  PubMed  Google Scholar 

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex, and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99(1), 45–77.

    Article  PubMed  Google Scholar 

  • Cohen, J. D., & Servan-Schreiber, D. (1993). A theory of dopamine function and its role in cognitive deficits in schizophrenia. Schizophrenia Bulletin, 19(1), 85–104.

    Article  PubMed  Google Scholar 

  • Conrad, K. (1958). Die beginnende Schizophrenie. Versuch einer Gestaltanalyse des Wahns (3rd ed.). Stuttgart, Germany: Thieme.

    Google Scholar 

  • Corlett, P. R., Frith, C. D., & Fletcher, P. C. (2009). From drugs to deprivation: A Bayesian framework for understanding models of psychosis. Psychopharmacology, 206(4), 515–530. doi:10.1007/s00213-009-1561-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011). Glutamatergic model psychoses: Prediction error, learning, and inference. Neuropsychopharmacology, 36(1), 294–315. doi:10.1038/npp.2010.163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrow, S., Granrud, C. E., Mathison, J., & Yonas, A. (2011). Six-month-old infants perceive the hollow-face illusion. Perception, 40(11), 1376–1383.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corrow, S. L., Mathison, J., Granrud, C. E., & Yonas, A. (2014). Six-month-old infants’ perception of the hollow face illusion: Evidence for a general convexity bias. Perception, 43(11), 1177–1190.

    Article  PubMed  Google Scholar 

  • Cox, M. D., & Leventhal, D. B. (1978). A multivariate analysis and modification of a preattentive, perceptual dysfunction in schizophrenia. Journal of Nervous and Mental Disease, 166(10), 709–718.

    Article  PubMed  Google Scholar 

  • Cromwell, R. (1984). Pre-emptive thinking and schizophrenia research. In W. D. Spaulding & J. K. Cole (Eds.), Theories of schizophrenia and psychosis (pp. 1–46). Lincoln, NE: University of Nebraska Press.

    Google Scholar 

  • Cuthbert, B. N., & Insel, T. R. (2010). Toward new approaches to psychotic disorders: The NIMH Research Domain Criteria project. Schizophrenia Bulletin, 36(6), 1061–1062. doi:10.1093/schbul/sbq108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cutting, J., & Dunne, F. (1986). The nature of the abnormal perceptual experiences at the onset of schizophrenia. Psychopathology, 19(6), 347–352.

    Article  PubMed  Google Scholar 

  • Dakin, S., Carlin, P., & Hemsley, D. (2005). Weak suppression of visual context in chronic schizophrenia. Current Biology, 15(20), R822–R824. doi:10.1016/j.cub.2005.10.015.

    Article  PubMed  Google Scholar 

  • Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507. doi:10.1016/j.neuron.2005.10.018.

    Article  PubMed  Google Scholar 

  • Davis, R. A., Bockbrader, M. A., Murphy, R. R., Hetrick, W. P., & O’Donnell, B. F. (2006). Subjective perceptual distortions and visual dysfunction in children with autism. Journal of Autism and Developmental Disorders, 36(2), 199–210. doi:10.1007/s10803-005-0055-0.

    Article  PubMed  Google Scholar 

  • Davis, K. L., Kahn, R. S., Ko, G., & Davidson, M. (1991). Dopamine in schizophrenia: A review and reconceptualization. The American Journal of Psychiatry, 148(11), 1474–1486.

    Article  PubMed  Google Scholar 

  • de Souza, C. F., Kalloniatis, M., Polkinghorne, P. J., McGhee, C. N., & Acosta, M. L. (2012). Functional activation of glutamate ionotropic receptors in the human peripheral retina. Experimental Eye Research, 94(1), 71–84. doi:10.1016/j.exer.2011.11.008.

    Article  PubMed  Google Scholar 

  • DeLue, R. A. (2004). George Inness and the science of landscape. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Diefendorf, A., & Dodge, R. (1908). An experimental study of the ocular reactions of the insane from photographic records. Brain, 31, 451–489.

    Article  Google Scholar 

  • Dima, D., Dietrich, D. E., Dillo, W., & Emrich, H. M. (2010). Impaired top-down processes in schizophrenia: A DCM study of ERPs. NeuroImage, 52(3), 824–832. doi:10.1016/j.neuroimage.2009.12.086.

    Article  PubMed  Google Scholar 

  • Dima, D., Dillo, W., Bonnemann, C., Emrich, H. M., & Dietrich, D. E. (2011). Reduced P300 and P600 amplitude in the hollow-mask illusion in patients with schizophrenia. Psychiatry Research, 191(2), 145–151. doi:10.1016/j.pscychresns.2010.09.015.

    Article  PubMed  Google Scholar 

  • Dima, D., Roiser, J. P., Dietrich, D. E., Bonnemann, C., Lanfermann, H., Emrich, H. M., & Dillo, W. (2009). Understanding why patients with schizophrenia do not perceive the hollow-mask illusion using dynamic causal modelling. Neuroimage, 46(4), 1180–1186. doi: 10.1016/j.neuroimage.2009.03.033.

    Google Scholar 

  • Doherty, M. J., Campbell, N. M., Tsuji, H., & Phillips, W. A. (2010). The Ebbinghaus illusion deceives adults but not children. Developmental Science, 13(5), 714–721.

    Article  PubMed  Google Scholar 

  • Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., & Javitt, D. C. (2002). Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Archives of General Psychiatry, 59(11), 1011–1020. doi:10.1001/archpsyc.59.11.1011.

    Article  PubMed  Google Scholar 

  • Doniger, G. M., Foxe, J. J., Murray, M. M., Higgins, B. A., Snodgrass, J. G., Schroeder, C. E., & Javitt, D. C. (2000). Activation timecourse of ventral visual stream object-recognition areas: High density electrical mapping of perceptual closure processes. Journal of Cognitive Neuroscience, 12(4), 615–621.

    Google Scholar 

  • Dorph-Petersen, K. A., Pierri, J. N., Wu, Q., Sampson, A. R., & Lewis, D. A. (2007). Primary visual cortex volume and total neuron number are reduced in schizophrenia. Journal of Comparative Neurology, 501(2), 290–301. doi:10.1002/cne.21243.

    Article  PubMed  Google Scholar 

  • Eaton, W. W., Hayward, C., & Ram, R. (1992). Schizophrenia and rheumatoid arthritis: A review. Schizophrenia Research, 6(3), 181–192.

    Article  PubMed  Google Scholar 

  • Ebel, H., Gross, G., Klosterkotter, J., & Huber, G. (1989). Basic symptoms in schizophrenic and affective psychoses. Psychopathology, 22(4), 224–232.

    Article  PubMed  Google Scholar 

  • Elkashef, A. M., Doudet, D., Bryant, T., Cohen, R. M., Li, S. H., & Wyatt, R. J. (2000). 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Research, 100(1), 1–11.

    Article  PubMed  Google Scholar 

  • Elliott, D. B. (1987). Contrast sensitivity decline with ageing: A neural or optical phenomenon? Ophthalmic and Physiological Optics, 7(4), 415–419.

    Article  PubMed  Google Scholar 

  • Emrich, H. M. (1989). A three-component-system hypothesis of psychosis. Impairment of binocular depth inversion as an indicator of a functional dysequilibrium. British Journal of Psychiatry, 155(Suppl 5), 37–39.

    Google Scholar 

  • Emrich, H. M., Leweke, F. M., & Schneider, U. (1997). Towards a cannabinoid hypothesis of schizophrenia: Cognitive impairments due to dysregulation of the endogenous cannabinoid system. Pharmacology, Biochemistry, and Behavior, 56(4), 803–807.

    Article  PubMed  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2(10), 704–716. doi:10.1038/35094565.

    Article  PubMed  Google Scholar 

  • Everson, R. M., Prashanth, A. K., Gabbay, M., Knight, B. W., Sirovich, L., & Kaplan, E. (1998). Representation of spatial frequency and orientation in the visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 95(14), 8334–8338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feigenson, K. A., Keane, B. P., Roche, M. W., & Silverstein, S. M. (2014). Contour integration impairment in schizophrenia and first episode psychosis: State or trait? Schizophrenia Research, 159(2–3), 515–520. doi:10.1016/j.schres.2014.09.028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ffytche, D. H. (2007). Visual hallucinatory syndromes: Past, present, and future. Dialogues in Clinical Neuroscience, 9(2), 173–189.

    PubMed  PubMed Central  Google Scholar 

  • Field, D. J., Hayes, A., & Hess, R. F. (1993). Contour integration by the human visual system: Evidence for a local “association field”. Vision Research, 33(2), 173–193.

    Article  PubMed  Google Scholar 

  • Firestone, C., & Scholl, B. (in press). Cognition does not affect perception: Evaluating the evidence for ‘top-down’ effects. Behavioral and Brain Sciences.

    Google Scholar 

  • Flevaris, A. V., Martinez, A., & Hillyard, S. A. (2013). Neural substrates of perceptual integration during bistable object perception. Journal of Vision, 13(13), 17. doi:10.1167/13.13.17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Foxe, J. J., Doniger, G. M., & Javitt, D. C. (2001). Early visual processing deficits in schizophrenia: Impaired P1 generation revealed by high-density electrical mapping. Neuroreport, 12(17), 3815–3820.

    Article  PubMed  Google Scholar 

  • Fries, P., Neuenschwander, S., Engel, A. K., Goebel, R., & Singer, W. (2001). Rapid feature selective neuronal synchronization through correlated latency shifting. Nature Neuroscience, 4(2), 194–200. doi:10.1038/84032.

    Article  PubMed  Google Scholar 

  • Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. doi:10.1038/nrn2787.

    Article  PubMed  Google Scholar 

  • Frith, C. D., Stevens, M., Johnstone, E. C., Owens, D. G., & Crow, T. J. (1983). Integration of schematic faces and other complex objects in schizophrenia. Journal of Nervous and Mental Disease, 171(1), 34–39.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2005). Cortex and mind: Unifying cognition. New York, NY: Oxford University Press.

    Book  Google Scholar 

  • Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677–696. doi:10.1016/j.neuron.2007.05.019.

    Article  PubMed  Google Scholar 

  • Glantz, L. A., & Lewis, D. A. (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Archives of General Psychiatry, 57(1), 65–73.

    Article  PubMed  Google Scholar 

  • Glezer, V. D. (1989). Vision and mind: Modeling mental functions. New York, NY: Elsevier.

    Book  Google Scholar 

  • Glezer, V. D., & Tsoukkerman, I. I. (1961). Information and vision. Leningrad: Izdatelstwo Akademii Nau SSSR.

    Google Scholar 

  • Gonzalez-Burgos, G., Cho, R. Y., & Lewis, D. A. (2015). Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biological Psychiatry, 77(12), 1031–1040. doi:10.1016/j.biopsych.2015.03.010.

    Article  PubMed  Google Scholar 

  • Gorwood, P., Pouchot, J., Vinceneux, P., Puechal, X., Flipo, R. M., De Bandt, M., … Club Rhumatisme et, Inflammation. (2004). Rheumatoid arthritis and schizophrenia: A negative association at a dimensional level. Schizophrenia Research, 66(1), 21–29.

    Google Scholar 

  • Gottlob, I., & Stangler-Zuschrott, E. (1990). Effect of levodopa on contrast sensitivity and scotomas in human amblyopia. Investigative Ophthalmology & Visual Science, 31(4), 776–780.

    Google Scholar 

  • Grano, N., Salmijarvi, L., Karjalainen, M., Kallionpaa, S., Roine, M., & Taylor, P. (2015). Early signs of worry: Psychosis risk symptom visual distortions are independently associated with suicidal ideation. Psychiatry Research, 225(3), 263–267. doi:10.1016/j.psychres.2014.12.031.

    Article  PubMed  Google Scholar 

  • Green, M. F., Hellemann, G., Horan, W. P., Lee, J., & Wynn, J. K. (2012). From perception to functional outcome in schizophrenia: Modeling the role of ability and motivation. Archives of General Psychiatry, 69(12), 1216–1224. doi:10.1001/archgenpsychiatry.2012.652.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, M. F., Lee, J., Wynn, J. K., & Mathis, K. I. (2011). Visual masking in schizophrenia: Overview and theoretical implications. Schizophrenia Bulletin, 37(4), 700–708. doi:10.1093/schbul/sbr051.

    Article  PubMed  PubMed Central  Google Scholar 

  • Green, M. F., Mintz, J., Salveson, D., Nuechterlein, K. H., Breitmeyer, B., Light, G. A., & Braff, D. L. (2003). Visual masking as a probe for abnormal gamma range activity in schizophrenia. Biological Psychiatry, 53(12), 1113–1119. doi: 10.1016/S0006-3223(02)01813-9.

    Google Scholar 

  • Gregory, R. L. (1970). The intelligent eye (pp. 126–131). New York, NY: McGraw-Hill.

    Google Scholar 

  • Grutzner, C., Wibral, M., Sun, L., Rivolta, D., Singer, W., Maurer, K., & Uhlhaas, P. J. (2013). Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia. Frontiers in Human Neuroscience, 7, 88. doi: 10.3389/fnhum.2013.00088.

  • Guillery, R. W., & Sherman, S. M. (2002). Thalamic relay functions and their role in corticocortical communication: Generalizations from the visual system. Neuron, 33(2), 163–175.

    Article  PubMed  Google Scholar 

  • Haenschel, C., Bittner, R. A., Haertling, F., Rotarska-Jagiela, A., Maurer, K., Singer, W., & Linden, D. E. (2007). Contribution of impaired early-stage visual processing to working memory dysfunction in adolescents with schizophrenia: A study with event-related potentials and functional magnetic resonance imaging. Archives of General Psychiatry, 64(11), 1229–1240. doi: 10.1001/archpsyc.64.11.1229.

    Google Scholar 

  • Haider, B., & McCormick, D. A. (2009). Rapid neocortical dynamics: Cellular and network mechanisms. Neuron, 62(2), 171–189. doi:10.1016/j.neuron.2009.04.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S., & Greenlee, M. W. (2013). Prestimulus oscillatory phase at 7 Hz gates cortical information flow and visual perception. Current Biology, 23(22), 2273–2278. doi:10.1016/j.cub.2013.09.020.

    Article  PubMed  Google Scholar 

  • Harris, J. P., Calvert, J. E., Leendertz, J. A., & Phillipson, O. T. (1990). The influence of dopamine on spatial vision. Eye (London, England), 4(Pt 6), 806–812. doi:10.1038/eye.1990.127.

    Article  Google Scholar 

  • Harvey, P. O., Lee, J., Cohen, M. S., Engel, S. A., Glahn, D. C., Nuechterlein, K. H., … Green, M. F. (2011). Altered dynamic coupling of lateral occipital complex during visual perception in schizophrenia. Neuroimage, 55(3), 1219–1226. doi: 10.1016/j.neuroimage.2010.12.045.

    Google Scholar 

  • Hebert, M., Gagne, A. M., Paradis, M. E., Jomphe, V., Roy, M. A., Merette, C., & Maziade, M. (2010). Retinal response to light in young nonaffected offspring at high genetic risk of neuropsychiatric brain disorders. Biological Psychiatry, 67(3), 270–274. doi: 10.1016/j.biopsych.2009.08.016.

    Google Scholar 

  • Heeger, D. J. (1992). Normalization of cell responses in cat striate cortex. Visual Neuroscience, 9(2), 181–197.

    Article  PubMed  Google Scholar 

  • Herzog, M. H., & Brand, A. (2015). Visual masking and schizophrenia. Schizophrenia Research: Cognition, 2(2), 64–71.

    Article  Google Scholar 

  • Herzog, M. H., Roinishvili, M., Chkonia, E., & Brand, A. (2013). Schizophrenia and visual backward masking: A general deficit of target enhancement. Frontiers in Psychology, 4, 254. doi:10.3389/fpsyg.2013.00254.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesse, H. (1971). Autobiographical Writings (D. Lindley, Trans. T. Ziolkowski Ed.). New York: Farrar, Straus, and Giroux

    Google Scholar 

  • Homayoun, H., & Moghaddam, B. (2006). Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: Rate-dependent influence and interaction with NMDA receptors. Cerebral Cortex, 16(1), 93–105. doi:10.1093/cercor/bhi087.

    Article  PubMed  Google Scholar 

  • Horton, H. K., & Silverstein, S. M. (2011). Visual context processing deficits in schizophrenia: Effects of deafness and disorganization. Schizophrenia Bulletin, 37(4), 716–726. doi:10.1093/schbul/sbr055.

    Article  PubMed  PubMed Central  Google Scholar 

  • Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: Version III—The final common pathway. Schizophrenia Bulletin, 35(3), 549–562. doi:10.1093/schbul/sbp006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, P. C., Hess, R. F., & Dakin, S. C. (2006). Flank facilitation and contour integration: Different sites. Vision Research, 46(21), 3699–3706. doi:10.1016/j.visres.2006.04.025.

    Article  PubMed  Google Scholar 

  • Huber, G., & Gross, G. (1989). The concept of basic symptoms in schizophrenic and schizoaffective psychoses. Recenti Progressi in Medicina, 80(12), 646–652.

    PubMed  Google Scholar 

  • Insel, T. R. (2010). Rethinking schizophrenia. Nature, 468(7321), 187–193. doi:10.1038/nature09552.

    Article  PubMed  Google Scholar 

  • Issa, N. P., Trepel, C., & Stryker, M. P. (2000). Spatial frequency maps in cat visual cortex. Journal of Neuroscience, 20(22), 8504–8514.

    PubMed  PubMed Central  Google Scholar 

  • Joseph, J., Bae, G., & Silverstein, S. M. (2013). Sex, symptom, and premorbid social functioning associated with perceptual organization dysfunction in schizophrenia. Frontiers in Psychology, 4, 547. doi:10.3389/fpsyg.2013.00547.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung, C. G. (1958). Schizophrenia (R. F. C. Hull, Trans.). In H. Read, M. Fordham & G. Adler (Eds.), The psychogenesis of mental disease (Vol. 3). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Jung, C.G. (1960). The psychology of dementia praecox (R. F. C. Hull, Trans. Vol. 3). Princeton, NJ: Princeton University Press. (Original work published 1907)

    Google Scholar 

  • Kantrowitz, J. T., Butler, P. D., Schecter, I., Silipo, G., & javitt, D. C. (2009). Seeing the world dimly: The impact of early visual deficits on visual experience in schizophrenia. Schizophrenia Bulletin, 35(6), 1085–1094. doi:10.1093/schbul/sbp100.

    Google Scholar 

  • Kapadia, M. K., Ito, M., Gilbert, C. D., & Westheimer, G. (1995). Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys. Neuron, 15(4), 843–856. doi:10.1016/0896-6273(95)90175-2.

    Article  PubMed  Google Scholar 

  • Kavsek, M., & Granrud, C. E. (2012). Children’s and adults’ size estimates at near and far distances: A test of the perceptual learning theory of size constancy development. Iperception, 3(7), 459–466. doi:10.1068/i0530.

    PubMed  PubMed Central  Google Scholar 

  • Kay, J. W., & Phillips, W. A. (2010). Coherent Infomax as a computational goal for neural systems. Bulletin of Mathematical Biology, 73(2), 344–372. doi:10.1007/s11538-010-9564-x.

    Article  PubMed  Google Scholar 

  • Keane, B. P., Erlikhman, G., Kastner, S., Paterno, D., & Silverstein, S. M. (2014). Multiple forms of contour grouping deficits in schizophrenia: What is the role of spatial frequency? Neuropsychologia, 65, 221–233. doi:10.1016/j.neuropsychologia.2014.10.031.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keane, B. P., Kastner, S., Paterno, D., & Silverstein, S. M. (2015). Is 20/20 vision good enough? Visual acuity differences within the normal range predict contour element detection and integration. Psychonomic Bulletin and Review, 22(1), 121–127. doi:10.3758/s13423-014-0647-9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keane, B. P., Paterno, D., & Silverstein, S. M. (Submitted). A more sensitive contour integration test validates visual integration dysfunction as a biomarker in schizophrenia.

    Google Scholar 

  • Keane, B. P., Silverstein, S. M., Barch, D. M., Carter, C. S., Gold, J. M., Kovacs, I., …. Strauss, M. E. (2012). The spatial range of contour integration deficits in schizophrenia. Experimental Brain Research, 220(3–4), 251–259. doi: 10.1007/s00221-012-3134-4.

    Google Scholar 

  • Keane, B. P., Silverstein, S. M., Wang, Y., & Papathomas, T. V. (2013). Reduced depth inversion illusions in schizophrenia are state-specific and occur for multiple object types and viewing conditions. Journal of Abnormal Psychology, 122(2), 506–512. doi:10.1037/a0032110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M., … Laruelle, M. (2010). Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Archives of General Psychiatry, 67(3), 231–239. doi: 10.1001/archgenpsychiatry.2010.10.

    Google Scholar 

  • Kelemen, O., Kiss, I., Benedek, G., & Keri, S. (2013). Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: The potential impact of GABA concentration in the visual cortex. Progress in Neuropsychopharmacology and Biological Psychiatry, 47, 13–19. doi:10.1016/j.pnpbp.2013.07.024.

    Article  Google Scholar 

  • Keri, S., Antal, A., Szekeres, G., Benedek, G., & Janka, Z. (2002). Spatiotemporal visual processing in schizophrenia. Journal of Neuropsychiatry and Clinical Neurosciences, 14(2), 190–196.

    Article  PubMed  Google Scholar 

  • Keri, S., & Benedek, G. (2007). Visual contrast sensitivity alterations in inferred magnocellular pathways and anomalous perceptual experiences in people at high-risk for psychosis. Visual Neuroscience, 24(2), 183–189. doi:10.1017/S0952523807070253.

    Article  PubMed  Google Scholar 

  • Keri, S., & Benedek, G. (2012). Why is vision impaired in fragile X premutation carriers? The role of fragile X mental retardation protein and potential FMR1 mRNA toxicity. Neuroscience, 206, 183–189. doi:10.1016/j.neuroscience.2012.01.005.

    Article  PubMed  Google Scholar 

  • Keri, S., Kelemen, O., Benedek, G., & Janka, Z. (2004). Vernier threshold in patients with schizophrenia and in their unaffected siblings. Neuropsychology, 18(3), 537–542. doi:10.1037/0894-4105.18.3.5372004-16644-014.

    Article  PubMed  Google Scholar 

  • Keri, S., Kelemen, O., Benedek, G., & Janka, Z. (2005). Lateral interactions in the visual cortex of patients with schizophrenia and bipolar disorder. Psychological Medicine, 35(7), 1043–1051.

    Article  PubMed  Google Scholar 

  • Keri, S., Kiss, I., Kelemen, O., Benedek, G., & Janka, Z. (2005). Anomalous visual experiences, negative symptoms, perceptual organization and the magnocellular pathway in schizophrenia: A shared construct? Psychological Medicine, 35(10), 1445–1455. doi:10.1017/S0033291705005398.

    Article  PubMed  Google Scholar 

  • Kim, D. W., Shim, M., Song, M. J., Im, C. H., & Lee, S. H. (2015). Early visual processing deficits in patients with schizophrenia during spatial frequency-dependent facial affect processing. Schizophrenia Research, 161(2-3), 314–321. doi:10.1016/j.schres.2014.12.020.

    Article  PubMed  Google Scholar 

  • Kim, H. S., Shin, N. Y., Choi, J. S., Jung, M. H., Jang, J. H., Kang, D. H., & Kwon, J. S. (2010). Processing of facial configuration in individuals at ultra-high risk for schizophrenia. Schizophrenia Research, 118(1–3), 81–87. doi: 10.1016/j.schres.2010.01.003.

    Google Scholar 

  • Kim, D., Wylie, G., Pasternak, R., Butler, P. D., & Javitt, D. C. (2006). Magnocellular contributions to impaired motion processing in schizophrenia. Schizophrenia Research, 82(1), 1–8. doi:10.1016/j.schres.2005.10.008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss, I., Fabian, A., Benedek, G., & Keri, S. (2010). When doors of perception open: Visual contrast sensitivity in never-medicated, first-episode schizophrenia. Journal of Abnormal Psychology, 119(3), 586–593. doi:10.1037/a0019610.

    Article  PubMed  Google Scholar 

  • Kiss, I., Janka, Z., Benedek, G., & Keri, S. (2006). Spatial frequency processing in schizophrenia: Trait or state marker? Journal of Abnormal Psychology, 115(3), 636–638. doi:10.1037/0021-843X.115.3.636.

    Article  PubMed  Google Scholar 

  • Klosterkotter, J., Hellmich, M., Steinmeyer, E. M., & Schultze-Lutter, F. (2001). Diagnosing schizophrenia in the initial prodromal phase. Archives of General Psychiatry, 58(2), 158–164.

    Article  PubMed  Google Scholar 

  • Knight, R. A. (1984). Converging models of cognitive deficits in schizophrenia. In Spaulding, W. & J. Coles (Eds.), Nebraska Symposium on Motivation: Theories of Schizophrenia and Psychosis (Vol. 31, pp. 93–156). Lincoln, NE: University of Nebraska Press.

    Google Scholar 

  • Knight, R. A. (1992). Specifying cognitive deficiencies in poor premorbid schizophrenics. In E. F. Walker, R. Dworkin, & B. Cornblatt (Eds.), Progress in experimental psychology & psychopathology research (Vol. 15, pp. 252–289). New York, NY: Springer.

    Google Scholar 

  • Knight, R. A., Elliott, D. S., & Freedman, E. G. (1985). Short-term visual memory in schizophrenics. Journal of Abnormal Psychology, 94(4), 427–442.

    Article  PubMed  Google Scholar 

  • Knight, R. A., Manoach, D. S., Elliott, D. S., & Hershenson, M. (2000). Perceptual organization in schizophrenia: The processing of symmetrical configurations. Journal of Abnormal Psychology, 109(4), 575–587.

    Article  PubMed  Google Scholar 

  • Knight, R. A., & Silverstein, S. M. (1998). The role of cognitive psychology in guiding research on cognitive deficits in schizophrenia. In M. Lenzenweger & R. H. Dworkin (Eds.), Origins and development of schizophrenia: Advances in experimental psychopathology (pp. 247–295). Washington, DC: APA Press.

    Chapter  Google Scholar 

  • Knight, R. A., & Silverstein, S. M. (2001). A process-oriented approach for averting confounds resulting from general performance deficiencies in schizophrenia. Journal of Abnormal Psychology, 110(1), 15–30.

    Article  PubMed  Google Scholar 

  • Koethe, D., Kranaster, L., Hoyer, C., Gross, S., Neatby, M. A., Schultze-Lutter, F., … Leweke, F. M. (2009). Binocular depth inversion as a paradigm of reduced visual information processing in prodromal state, antipsychotic-naive and treated schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 259(4), 195–202. doi: 10.1007/s00406-008-0851-6.

    Google Scholar 

  • Kourtzi, Z., Tolias, A. S., Altmann, C. F., Augath, M., & Logothetis, N. K. (2003). Integration of local features into global shapes: Monkey and human FMRI studies. Neuron, 37(2), 333–346. doi:10.1016/S0896-6273(02)01174-1.

    Article  PubMed  Google Scholar 

  • Kovacs, I. (2000). Human development of perceptual organization. Vision Research, 40(10–12), 1301–1310. doi:10.1016/s0042-6989(00)00055-9.

    Article  PubMed  Google Scholar 

  • Kovacs, I., & Julesz, B. (1993). A closed curve is much more than an incomplete one: Effect of closure in figure-ground segmentation. Proceedings of the National Academy of Sciences of the United States of America, 90(16), 7495–7497.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs, I., Polat, U., Pennefather, P. M., Chandna, A., & Norcia, A. M. (2000). A new test of contour integration deficits in patients with a history of disrupted binocular experience during visual development. Vision Research, 40(13), 1775–1783.

    Article  PubMed  Google Scholar 

  • Kozma-Weibe, P., Silverstein, S. M., Feher, A., Kovacs, I., Uhlhaas, P., & Wilkniss, S. (2006). Development of a World-Wide-Web based contour integration test: Reliability and validity. Computers in Human Behavior, 22, 971–980.

    Article  Google Scholar 

  • Kraepelin, E. (1903). Lehrbuch der Psychiatrie (7th ed.). Leipzig, Germany: Barth.

    Google Scholar 

  • Kressel, N. J. (1990). Systemic barriers to progress in academic social psychology. The Journal of Social Psychology, 130(1), 5–27.

    Article  Google Scholar 

  • Landgraf, S., & Osterheider, M. (2013). “To see or not to see: That is the question.” The “Protection-Against-Schizophrenia” (PaSZ) model: Evidence from congenital blindness and visuo-cognitive aberrations. Frontiers in Psychology, 4, 352. doi:10.3389/fpsyg.2013.00352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Laprevote, V., Oliva, A., Delerue, C., Thomas, P., & Boucart, M. (2010). Patients with schizophrenia are biased toward low spatial frequency to decode facial expression at a glance. Neuropsychologia, 48(14), 4164–4168. doi:10.1016/j.neuropsychologia.2010.10.017.

    Article  PubMed  Google Scholar 

  • Larkum, M. (2013). A cellular mechanism for cortical associations: An organizing principle for the cerebral cortex. Trends in Neurosciences, 36(3), 141–151. doi:10.1016/j.tins.2012.11.006.

    Article  PubMed  Google Scholar 

  • Larkum, M. E., Nevian, T., Sandler, M., Polsky, A., & Schiller, J. (2009). Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: A new unifying principle. Science, 325(5941), 756–760. doi:10.1126/science.1171958.

    Article  PubMed  Google Scholar 

  • Larkum, M. E., & Phillips, W. A. (in press). Are apical amplification and disamplification enhanced by arousal-induced NE release? Behavioral and Brain Sciences.

    Google Scholar 

  • Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature, 398(6725), 338–341. doi:10.1038/18686.

    Article  PubMed  Google Scholar 

  • Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., & Innis, R. (1999). Increased dopamine transmission in schizophrenia: Relationship to illness phases. Biological Psychiatry, 46(1), 56–72.

    Article  PubMed  Google Scholar 

  • Lee, M. S., & Fern, A. I. (2004). Fluphenazine and its toxic maculopathy. Ophthalmic Research, 36(4), 237–239. doi:10.1159/000078784.

    Article  PubMed  Google Scholar 

  • Lee, J., Gosselin, F., Wynn, J. K., & Green, M. F. (2011). How do schizophrenia patients use visual information to decode facial emotion? Schizophrenia Bulletin, 37(5), 1001–1008. doi:10.1093/schbul/sbq006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, S. H., Kwan, A. C., Zhang, S., Phoumthipphavong, V., Flannery, J. G., Masmanidis, S. C., … Dan, Y. (2012). Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature, 488(7411), 379–383. doi: 10.1038/nature11312.

    Google Scholar 

  • Lee, C. C., & Sherman, S. M. (2010). Drivers and modulators in the central auditory pathways. Frontiers in Neuroscience, 4, 79. doi:10.3389/neuro.01.014.2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leivada, E., & Boeckx, C. (2014). Schizophrenia and cortical blindness: Protective effects and implications for language. Frontiers in Human Neuroscience, 8, 940. doi:10.3389/fnhum.2014.00940.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lencer, R., Nagel, M., Sprenger, A., Heide, W., & Binkofski, F. (2005). Reduced neuronal activity in the V5 complex underlies smooth-pursuit deficit in schizophrenia: Evidence from an fMRI study. NeuroImage, 24(4), 1256–1259. doi:10.1016/j.neuroimage.2004.11.013.

    Article  PubMed  Google Scholar 

  • Lenzenweger, M. F. (2011). Schizotypy and schizophrenia: The view from experimental psychopathology. New York, NY: Guilford Press.

    Google Scholar 

  • Leventhal, A. G., Wang, Y., Pu, M., Zhou, Y., & Ma, Y. (2003). GABA and its agonists improved visual cortical function in senescent monkeys. Science, 300(5620), 812–815. doi:10.1126/science.1082874.

    Article  PubMed  Google Scholar 

  • Levy, D. L., Holzman, P. S., Matthysse, S., & Mendell, N. R. (1993). Eye tracking dysfunction and schizophrenia: A critical perspective. Schizophrenia Bulletin, 19(3), 461–536.

    Article  PubMed  Google Scholar 

  • Li, W., Piech, V., & Gilbert, C. D. (2006). Contour saliency in primary visual cortex. Neuron, 50(6), 951–962. doi:10.1016/j.neuron.2006.04.035.

    Article  PubMed  Google Scholar 

  • Li, W., Piech, V., & Gilbert, C. D. (2008). Learning to link visual contours. Neuron, 57(3), 442–451. doi:10.1016/j.neuron.2007.12.011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Logan, G. D., & Zbrodoff, N. J. (1999). Selection for cognition: Cognitive constraints on visual spatial attention. Visual Cognition, 6(1), 51–81.

    Article  Google Scholar 

  • Lotto, R. B., & Purves, D. (2001). An empirical explanation of the Chubb illusion. Journal Cognitive Neuroscience, 13(5), 547–555. doi:10.1162/089892901750363154.

    Article  Google Scholar 

  • Lykken, D. (1991). What’s wrong with psychology, anyway? In D. Cicchetti & W. M. Grove (Eds.), Matters of public interest. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Major, G., Larkum, M. E., & Schiller, J. (2013). Active properties of neocortical pyramidal neuron dendrites. Annual Review of Neuroscience, 36, 1–24. doi:10.1146/annurev-neuro-062111-150343.

    Article  PubMed  Google Scholar 

  • Marcus, D. S., & Van Essen, D. C. (2002). Scene segmentation and attention in primate cortical areas V1 and V2. Journal of Neurophysiology, 88(5), 2648–2658. doi:10.1152/jn.00916.2001.

    Article  PubMed  Google Scholar 

  • Martinez, A., Hillyard, S. A., Bickel, S., Dias, E. C., Butler, P. D., & Javitt, D. C. (2012). Consequences of magnocellular dysfunction on processing attended information in schizophrenia. Cerebral Cortex, 22(6), 1282–1293. doi:10.1093/cercor/bhr195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez, A., Revheim, N., Butler, P. D., Guilfoyle, D. N., Dias, E. C., & Javitt, D. C. (2012). Impaired magnocellular/dorsal stream activation predicts impaired reading ability in schizophrenia. NeuroImage: Clinical, 2, 8–16. doi:10.1016/j.nicl.2012.09.006.

    Article  Google Scholar 

  • Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (In press). Norepinephrine ignites local hot spots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences.

    Google Scholar 

  • Matussek, P. (1952). Untersuchungen über die Wahnwahrnehmung. 1. Mitteilung. Veränderungen der Wahrnehmungswelt bei beginnendem, primären Wahn. Archiv für Psychiatrie und Zeitschrift für die gesammte Neurologie, 189, 279–319.

    Google Scholar 

  • Matussek, P. (1953). Untersuchungen über die Wahnwahrnehmung. 2. Mitteilung: Die auf einem abnormen Vorrang von Wesenseigenschaftenberuhenden Eigentümlichkeiten derWahnwahrnehmung Schweizer Archiv für Neurologie und Psychiatrie, 71, 189–210.

    Google Scholar 

  • Matussek, P. (1987). Studies in delusional perception. Translated and condensed. In M. S. J. Cutting (Ed.), Clinical roots of the schizophrenia concept. Translations of seminal European contributions on schizophrenia. Cambridge, England: Cambridge University Press.

    Google Scholar 

  • McBain, R., Norton, D., & Chen, Y. (2010). Differential roles of low and high spatial frequency content in abnormal facial emotion perception in schizophrenia. Schizophrenia Research, 122(1–3), 151–155. doi:10.1016/j.schres.2010.03.034.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarty, C. A., Wood, C. A., Fu, C. L., Livingston, P. M., Mackersey, S., Stanislavsky, Y., & Taylor, H. R. (1999). Schizophrenia, psychotropic medication, and cataract. Ophthalmology, 106(4), 683–687. doi: 10.1016/S0161-6420(99)90151-3.

    Google Scholar 

  • Mitelman, S. A., & Buchsbaum, M. S. (2007). Very poor outcome schizophrenia: Clinical and neuroimaging aspects. International Review of Psychiatry, 19(4), 345–357. doi:10.1080/09540260701486563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal, V. A., Gupta, T., Keane, B. P., & Silverstein, S. M. (2015). Visual context processing dysfunctions in youth at high risk for psychosis: Resistance to the Ebbinghaus illusion and its symptom and social and role functioning correlates. Journal of Abnormal Psychology, 124(4), 953–960.

    Google Scholar 

  • Mizobe, K., Polat, U., Pettet, M. W., & Kasamatsu, T. (2001). Facilitation and suppression of single striate-cell activity by spatially discrete pattern stimuli presented beyond the receptive field. Visual Neuroscience, 18(3), 377–391.

    Article  PubMed  Google Scholar 

  • Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37(1), 4–15. doi:10.1038/npp.2011.181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W., & Nitsche, M. A. (2010). Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. Journal of Physiology, 588(Pt 18), 3415–3424. doi:10.1113/jphysiol.2010.190181.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mors, O., Mortensen, P. B., & Ewald, H. (1999). A population-based register study of the association between schizophrenia and rheumatoid arthritis. Schizophrenia Research, 40(1), 67–74.

    Article  PubMed  Google Scholar 

  • Nagel, M., Sprenger, A., Nitschke, M., Zapf, S., Heide, W., Binkofski, F., & Lencer, R. (2007). Different extraretinal neuronal mechanisms of smooth pursuit eye movements in schizophrenia: An fMRI study. Neuroimage, 34(1), 300–309. doi: 10.1016/j.neuroimage.2006.08.025.

    Google Scholar 

  • Nakajima, S., Caravaggio, F., Mamo, D. C., Mulsant, B. H., Chung, J. K., Plitman, E., … Graff-Guerrero, A. (2015). Dopamine D(2)/(3) receptor availability in the striatum of antipsychotic-free older patients with schizophrenia-A [(1)(1)C]-raclopride PET study. Schizophrenia Research, 164(1–3), 263–267. doi: 10.1016/j.schres.2015.02.020.

    Google Scholar 

  • Neill, E., Joshua, N., Morgan, C., & Rossell, S. L. (2015). The effect of ketamine on configural facial processing. Journal of Clinical Psychopharmacology, 35(2), 188–191. doi:10.1097/JCP.0000000000000278.

    Article  Google Scholar 

  • Nemati, F. (2009). Size and direction of distortion in geometric-optical illusions: Conciliation between the Muller-Lyer and Titchener configurations. Perception, 38(11), 1585–1600.

    Article  PubMed  Google Scholar 

  • Nevian, T., Larkum, M. E., Polsky, A., & Schiller, J. (2007). Properties of basal dendrites of layer 5 pyramidal neurons: A direct patch-clamp recording study. Nature Neuroscience, 10(2), 206–214. doi:10.1038/nn1826.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Monte-Silva, K., Kuo, M. F., & Paulus, W. (2010). Dopaminergic impact on cortical excitability in humans. Reviews in the Neurosciences, 21(4), 289–298.

    Article  PubMed  Google Scholar 

  • Norton, D., McBain, R., Holt, D. J., Ongur, D., & Chen, Y. (2009). Association of impaired facial affect recognition with basic facial and visual processing deficits in schizophrenia. Biological Psychiatry, 65(12), 1094–1098. doi:10.1016/j.biopsych.2009.01.026.

    Article  PubMed  Google Scholar 

  • O’Donnell, B. F., Bismark, A., Hetrick, W. P., Bodkins, M., Vohs, J. L., & Shekhar, A. (2006). Early stage vision in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 86(1–3), 89–98. doi:10.1016/j.schres.2006.05.016.

    Article  PubMed  Google Scholar 

  • O’Donnell, B. F., Potts, G. F., Nestor, P. G., Stylianopoulos, K. C., Shenton, M. E., & McCarley, R. W. (2002). Spatial frequency discrimination in schizophrenia. Journal of Abnormal Psychology, 111(4), 620–625.

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donohue, W., Ferguson, K. E., & Naugle, A. E. (2003). The structure of the cognitive revolution: An examination from the philosophy of science. Behavior Analyst, 26(1), 85–110.

    PubMed  PubMed Central  Google Scholar 

  • Okamoto, M., Naito, T., Sadakane, O., Osaki, H., & Sato, H. (2009). Surround suppression sharpens orientation tuning in the cat primary visual cortex. European Journal of Neuroscience, 29(5), 1035–1046. doi:10.1111/j.1460-9568.2009.06645.x.

    Article  PubMed  Google Scholar 

  • Oken, R. J., & Schulzer, M. (1999). At issue: Schizophrenia and rheumatoid arthritis: The negative association revisited. Schizophrenia Bulletin, 25(4), 625–638.

    Article  PubMed  Google Scholar 

  • Olney, J. W., & Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Archives of General Psychiatry, 52(12), 998–1007.

    Article  PubMed  Google Scholar 

  • Olypher, A. V., Klement, D., & Fenton, A. A. (2006). Cognitive disorganization in hippocampus: A physiological model of the disorganization in psychosis. Journal of Neuroscience, 26(1), 158–168. doi:10.1523/JNEUROSCI.2064-05.2006.

    Article  PubMed  Google Scholar 

  • Onitsuka, T., McCarley, R. W., Kuroki, N., Dickey, C. C., Kubicki, M., Demeo, S. S., … Shenton, M. E. (2007). Occipital lobe gray matter volume in male patients with chronic schizophrenia: A quantitative MRI study. Schizophrenia Research, 92(1–3), 197–206. doi: 10.1016/j.schres.2007.01.027.

    Google Scholar 

  • Onitsuka, T., Niznikiewicz, M. A., Spencer, K. M., Frumin, M., Kuroki, N., Lucia, L. C., … McCarley, R. W. (2006). Functional and structural deficits in brain regions subserving face perception in schizophrenia. American Journal of Psychiatry, 163(3), 455–462. doi: 10.1176/appi.ajp.163.3.455.

    Google Scholar 

  • Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828. doi:10.1016/j.neuron.2013.06.027.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer, S. E. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Papathomas, T. V., & Bono, L. M. (2004). Experiments with a hollow mask and a reverspective: Top-down influences in the inversion effect for 3-D stimuli. Perception, 33(9), 1129–1138.

    Article  PubMed  Google Scholar 

  • Parnas, J., Vianin, P., Saebye, D., Jansson, L., Volmer-Larsen, A., & Bovet, P. (2001). Visual binding abilities in the initial and advanced stages of schizophrenia. Acta Psychiatrica Scandinavica, 103(3), 171–180.

    Article  PubMed  Google Scholar 

  • Patterson, T., Spohn, H. E., & Hayes, K. (1987). Topographic evoked potentials during backward masking in schizophrenics, patient controls and normal controls. Progress in Neuropsychopharmacology and Biological Psychiatry, 11(6), 709–728.

    Article  Google Scholar 

  • Phillips, W. A. (Submitted). Cognitive functions of intracellular mechanisms for contextual amplification.

    Google Scholar 

  • Phillips, W. A., Clark, A., & Silverstein, S. M. (2015). On the functions, mechanisms, and malfunctions of intracortical contextual modulation. Neuroscience and Biobehavioral Reviews, 52, 1–20. doi:10.1016/j.neubiorev.2015.02.010.

    Article  PubMed  Google Scholar 

  • Phillips, W. A., & Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behavioral and Brain Sciences, 26(1), 65–82. discussion 82–137.

    Article  PubMed  Google Scholar 

  • Phillips, W. A., & Silverstein, S. M. (2013). The coherent organization of mental life depends on mechanisms for context-sensitive gain-control that are impaired in schizophrenia. Frontiers in Psychology, 4, 307. doi:10.3389/fpsyg.2013.00307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips, W. A., & Singer, W. (1997). In search of common foundations for cortical computation. Behavioral and Brain Sciences, 20(4), 657–683. discussion 683–722.

    Article  PubMed  Google Scholar 

  • Phillipson, O. T., & Harris, J. P. (1985). Perceptual changes in schizophrenia: A questionnaire survey. Psychological Medicine, 15(4), 859–866.

    Article  PubMed  Google Scholar 

  • Polat, U., & Sagi, D. (1993). Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments. Vision Research, 33(7), 993–999.

    Article  PubMed  Google Scholar 

  • Purves, D., Lotto, R. B., Williams, S. M., Nundy, S., & Yang, Z. (2001). Why we see things the way we do: Evidence for a wholly empirical strategy of vision. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1407), 285–297. doi:10.1098/rstb.2000.0772.

    Article  PubMed  PubMed Central  Google Scholar 

  • Purves, D., Wojtach, W. T., & Lotto, R. B. (2011). Understanding vision in wholly empirical terms. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 3), 15588–15595. doi:10.1073/pnas.1012178108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabinowicz, E. F., Opler, L. A., Owen, D. R., & Knight, R. A. (1996). Dot Enumeration Perceptual Organization Task (DEPOT): Evidence for a short-term visual memory deficit in schizophrenia. Journal of Abnormal Psychology, 105(3), 336–348.

    Article  PubMed  Google Scholar 

  • Rassovsky, Y., Green, M. F., Nuechterlein, K. H., Breitmeyer, B. G., & Mintz, J. (2005). Visual processing in schizophrenia: Structural equation modeling of visual masking performance. Schizophrenia Research, 78(2–3), 251–260. doi:10.1016/j.schres.2005.05.011.

    Article  PubMed  Google Scholar 

  • Rassovsky, Y., Horan, W. P., Lee, J., Sergi, M. J., & Green, M. F. (2011). Pathways between early visual processing and functional outcome in schizophrenia. Psychological Medicine, 41(3), 487–497. doi:10.1017/S0033291710001054.

    Article  PubMed  Google Scholar 

  • Revheim, N., Corcoran, C. M., Dias, E., Hellmann, E., Martinez, A., Butler, P. D., … Javitt, D. C. (2014). Reading deficits in schizophrenia and individuals at high clinical risk: Relationship to sensory function, course of illness, and psychosocial outcome. American Journal of Psychiatry, 171(9), 949–959. doi: 10.1176/appi.ajp.2014.13091196.

    Google Scholar 

  • Rivolta, D., Castellanos, N. P., Stawowsky, C., Helbling, S., Wibral, M., Grutzner, C., … Uhlhaas, P. J. (2014). Source-reconstruction of event-related fields reveals hyperfunction and hypofunction of cortical circuits in antipsychotic-naive, first-episode schizophrenia patients during Mooney face processing. Journal of Neuroscience, 34(17), 5909–5917. doi:10.1523/JNEUROSCI.3752-13.2014.

    Google Scholar 

  • Robol, V., Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., & Dakin, S. C. (2013). Reduced crowding and poor contour detection in schizophrenia are consistent with weak surround inhibition. PLoS One, 8(4), e60951. doi:10.1371/journal.pone.0060951.

    Google Scholar 

  • Rokem, A., Yoon, J. H., Ooms, R. E., Maddock, R. J., Minzenberg, M. J., & Silver, M. A. (2011). Broader visual orientation tuning in patients with schizophrenia. Frontiers in Human Neuroscience, 5, 127. doi:10.3389/fnhum.2011.00127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saccuzzo, D. P., Hirt, M., & Spencer, T. J. (1974). Backward masking as a measure of attention in schizophrenia. Journal of Abnormal Psychology, 83(5), 512–522.

    Article  PubMed  Google Scholar 

  • Saccuzzo, D. P., & Schubert, D. L. (1981). Backward masking as a measure of slow processing in schizophrenia spectrum disorders. Journal of Abnormal Psychology, 90(4), 305–312.

    Article  PubMed  Google Scholar 

  • Saks, E. (2008). The center cannot hold: My journey through madness. New York, NY: Hachette Books.

    Google Scholar 

  • Salinas, E., & Sejnowski, T. J. (2001). Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet. The Neuroscientist, 7(5), 430–440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schallmo, M. P., Sponheim, S. R., & Olman, C. A. (2013a). Abnormal contextual modulation of visual contour detection in patients with schizophrenia. PLoS One, 8(6), e68090. doi:10.1371/journal.pone.0068090.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schallmo, M. P., Sponheim, S. R., & Olman, C. A. (2013b). Correction: Abnormal contextual modulation of visual contour detection in patients with schizophrenia. PLoS One, 8(10). doi: 10.1371/annotation/f082ec4d-419c-43ce-ae50-e05107539bf3.

  • Schechter, I., Butler, P. D., Silipo, G., Zemon, V., & Javitt, D. C. (2003). Magnocellular and parvocellular contributions to backward masking dysfunction in schizophrenia. Schizophrenia Research, 64(2–3), 91–101.

    Article  PubMed  Google Scholar 

  • Schenkel, L. S., Spaulding, W. D., DiLillo, D., & Silverstein, S. M. (2005). Histories of childhood maltreatment in schizophrenia: Relationships with premorbid functioning, symptomatology, and cognitive deficits. Schizophrenia Research, 76(2-3), 273–286. doi:10.1016/j.schres.2005.03.003.

    Article  PubMed  Google Scholar 

  • Schenkel, L. S., Spaulding, W. D., & Silverstein, S. M. (2005). Poor premorbid social functioning and theory of mind deficit in schizophrenia: Evidence of reduced context processing? Journal of Psychiatric Research, 39(5), 499–508. doi:10.1016/j.jpsychires.2005.01.001.

    Article  PubMed  Google Scholar 

  • Schiffman, J., Maeda, J. A., Hayashi, K., Michelsen, N., Sorensen, H. J., Ekstrom, M., … Mednick, S. A. (2006). Premorbid childhood ocular alignment abnormalities and adult schizophrenia-spectrum disorder. Schizophrenia Research, 81(2–3), 253–260. doi: 10.1016/j.schres.2005.08.008.

    Google Scholar 

  • Schneider, U., Borsutzky, M., Seifert, J., Leweke, F. M., Huber, T. J., Rollnik, J. D., & Emrich, H. M. (2002). Reduced binocular depth inversion in schizophrenic patients. Schizophrenia Research, 53(1–2), 101–108. doi: 10.1016/S0920-9964(00)00172-9.

    Google Scholar 

  • Schobel, S. A., Chaudhury, N. H., Khan, U. A., Paniagua, B., Styner, M. A., Asllani, I., … Small, S. A. (2013). Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron, 78(1), 81–93. doi: 10.1016/j.neuron.2013.02.011.

    Google Scholar 

  • Schubert, E. W., Henriksson, K. M., & McNeil, T. F. (2005). A prospective study of offspring of women with psychosis: Visual dysfunction in early childhood predicts schizophrenia-spectrum disorders in adulthood. Acta Psychiatrica Scandinavica, 112(5), 385–393. doi:10.1111/j.1600-0447.2005.00584.x.

    Article  PubMed  Google Scholar 

  • Schultz, C. C., Wagner, G., Koch, K., Gaser, C., Roebel, M., Schachtzabel, C., … Schlosser, R. G. (2013). The visual cortex in schizophrenia: Alterations of gyrification rather than cortical thickness—A combined cortical shape analysis. Brain Structure and Function, 218(1), 51–58. doi:10.1007/s00429-011-0374-1.

    Google Scholar 

  • Schummers, J., Marino, J., & Sur, M. (2002). Synaptic integration by V1 neurons depends on location within the orientation map. Neuron, 36(5), 969–978.

    Article  PubMed  Google Scholar 

  • Seeman, P., Schwarz, J., Chen, J. F., Szechtman, H., Perreault, M., McKnight, G. S., … Sumiyoshi, T. (2006). Psychosis pathways converge via D2high dopamine receptors. Synapse, 60(4), 319–346. doi:10.1002/syn.20303.

    Google Scholar 

  • Sehatpour, P., Dias, E. C., Butler, P. D., Revheim, N., Guilfoyle, D. N., Foxe, J. J., & Javitt, D. C. (2010). Impaired visual object processing across an occipital-frontal-hippocampal brain network in schizophrenia: An integrated neuroimaging study. Archives of General Psychiatry, 67(8), 772–782. doi:10.1001/archgenpsychiatry.2010.85.

    Google Scholar 

  • Sehatpour, P., Molholm, S., Javitt, D. C., & Foxe, J. J. (2006). Spatiotemporal dynamics of human object recognition processing: An integrated high-density electrical mapping and functional imaging study of “closure” processes. NeuroImage, 29(2), 605–618. doi:10.1016/j.neuroimage.2005.07.049.

    Article  PubMed  Google Scholar 

  • Selemon, L. D., Rajkowska, G., & Goldman-Rakic, P. S. (1995). Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17. Archives of General Psychiatry, 52(10), 805–818. Discussion 819–820.

    Article  PubMed  Google Scholar 

  • Self, M. W., Kooijmans, R. N., Super, H., Lamme, V. A., & Roelfsema, P. R. (2012). Different glutamate receptors convey feedforward and recurrent processing in macaque V1. Proceedings of the National Academy of Sciences of the United States of America, 109(27), 11031–11036. doi:10.1073/pnas.1119527109.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sesack, S. R., Hawrylak, V. A., Melchitzky, D. S., & Lewis, D. A. (1998). Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: Ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cerebral Cortex, 8(7), 614–622.

    Article  PubMed  Google Scholar 

  • Sheremata, S., & Chen, Y. (2004). Co-administration of atypical antipsychotics and antidepressants disturbs contrast detection in schizophrenia. Schizophrenia Research, 70(1), 81–89. doi:10.1016/j.schres.2003.09.005.

    Article  PubMed  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1428), 1695–1708. doi:10.1098/rstb.2002.1161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoshina, I. I., & Shelepin Iu, E. (2013). The contrast sensitivity in schizophrenia with different durations disease. Rossiĭskii Fiziologicheskiĭ Zhurnal Imeni I.M. Sechenova, 99(8), 928–936.

    PubMed  Google Scholar 

  • Silverstein, S. M. (2008). Measuring specific, rather than generalized, cognitive deficits and maximizing between-group effect size in studies of cognition and cognitive change. Schizophrenia Bulletin, 34(4), 645–655. doi:10.1093/schbul/sbn032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein, S. M., All, S. D., Kasi, R., Berten, S., Essex, B., Lathrop, K. L., & Little, D. M. (2010). Increased fusiform area activation in schizophrenia during processing of spatial frequency-degraded faces, as revealed by fMRI. Psychological Medicine, 40(7), 1159–1169. doi:10.1017/S0033291709991735.

    Google Scholar 

  • Silverstein, S. M., All, S. D., Thompson, J. L., Williams, L. M., Whitford, T. J., Nagy, M., … Gordon, E. (2012). Absolute level of gamma synchrony is increased in first episode schizophrenia during face processing. Journal of Experimental Psychopathology, 3, 702–723.

    Google Scholar 

  • Silverstein, S. M., Bakshi, S., Chapman, R. M., & Nowlis, G. (1998). Perceptual organization of configural and nonconfigural visual patterns in schizophrenia: Effects of repeated exposure. Cognitive Neuropsychiatry, 3, 209–223.

    Article  Google Scholar 

  • Silverstein, S. M., Bakshi, S., Nuernberger, S., Carpinello, K., & Wilkniss, S. (2005). Effects of stimulus structure and target-distracter similarity on the development of visual memory representations in schizophrenia. Cognitive Neuropsychiatry, 10(3), 215–229. doi:10.1080/13546800444000029.

    Article  PubMed  Google Scholar 

  • Silverstein, S. M., Berten, S., Essex, B., Kovacs, I., Susmaras, T., & Little, D. M. (2009). An fMRI examination of visual integration in schizophrenia. Journal of Integrative Neuroscience, 8(2), 175–202.

    Article  PubMed  Google Scholar 

  • Silverstein, S. M., Harms, M. P., Carter, C. S., Gold, J. M., Keane, B. P., MacDonald, A., III, … Barch, D. M. (2015). Cortical contributions to impaired contour integration in schizophrenia. Neuropsychologia, 75, 469–480. doi: 10.1016/j.neuropsychologia.2015.07.003.

    Google Scholar 

  • Silverstein, S. M., Hatashita-Wong, M., Schenkel, L. S., Wilkniss, S., Kovacs, I., Feher, A., … Savitz, A. (2006). Reduced top-down influences in contour detection in schizophrenia. Cognitive Neuropsychiatry, 11(2), 112–132. doi: 10.1080/13546800444000209.

    Google Scholar 

  • Silverstein, S. M., & Keane, B. P. (2009). Perceptual organization in schizophrenia: Plasticity and state-related change. Learning and Perception, 1, 229–261.

    Article  Google Scholar 

  • Silverstein, S. M., & Keane, B. P. (2011a). Perceptual organization impairment in schizophrenia and associated brain mechanisms: Review of research from 2005 to 2010. Schizophrenia Bulletin, 37(4), 690–699. doi:10.1093/schbul/sbr052.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein, S. M., & Keane, B. P. (2011b). Vision science and schizophrenia research: Toward a re-view of the disorder editors’ introduction to special section. Schizophrenia Bulletin, 37(4), 681–689. doi:10.1093/schbul/sbr053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silverstein, S. M., Keane, B. P., Barch, D. M., Carter, C. S., Gold, J. M., Kovacs, I., … Strauss, M. E. (2012). Optimization and validation of a visual integration test for schizophrenia research. Schizophrenia Bulletin, 38(1), 125–134. doi:10.1093/schbul/sbr141.

    Google Scholar 

  • Silverstein, S. M., Keane, B. P., Papathomas, T. V., Lathrop, K. L., Kourtev, H., Feigenson, K., … Paterno, D. (2014). Processing of spatial-frequency altered faces in schizophrenia: Effects of illness phase and duration. PLoS One, 9(12), e114642. doi:10.1371/journal.pone.0114642.

    Google Scholar 

  • Silverstein, S. M., Keane, B. P., Wang, Y., Mikkilineni, D., Paterno, D., Papathomas, T. V., & Feigenson, K. (2013). Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Frontiers in Psychology, 4, 466. doi: 10.3389/fpsyg.2013.00466.

  • Silverstein, S. M., Knight, R. A., Schwarzkopf, S. B., West, L. L., Osborn, L. M., & Kamin, D. (1996). Stimulus configuration and context effects in perceptual organization in schizophrenia. Journal of Abnormal Psychology, 105(3), 410–420.

    Article  PubMed  Google Scholar 

  • Silverstein, S. M., Kovacs, I., Corry, R., & Valone, C. (2000). Perceptual organization, the disorganization syndrome, and context processing in chronic schizophrenia. Schizophrenia Research, 43(1), 11–20. doi:10.1016/S0920-9964(99)00180-2.

    Article  PubMed  Google Scholar 

  • Silverstein, S. M., Moghaddam, B., & Wykes, T. (Eds.). (2013). Schizophrenia: Evolution and synthesis (Vol. 13). Cambridge, MA: MIT Press.

    Google Scholar 

  • Silverstein, S. M., & Rosen, R. (2015). Schizophrenia and the eye. Schizophrenia Research: Cognition, 2(2), 46–55.

    Article  Google Scholar 

  • Silverstein, S. M., Schenkel, L. S., Valone, C., & Nuernberger, S. W. (1998). Cognitive deficits and psychiatric rehabilitation outcomes in schizophrenia. Psychiatric Quarterly, 69(3), 169–191.

    Article  PubMed  Google Scholar 

  • Silverstein, S. M., Wang, Y., & Keane, B. P. (2012). Cognitive and neuroplasticity mechanisms by which congenital or early blindness may confer a protective effect against schizophrenia. Frontiers in Psychology, 3, 624. doi:10.3389/fpsyg.2012.00624.

    PubMed  PubMed Central  Google Scholar 

  • Silverstein, S. M., Wang, Y., & Roche, M. W. (2013). Base rates, blindness, and schizophrenia. Frontiers in Psychology, 4, 157. doi:10.3389/fpsyg.2013.00157.

    PubMed  PubMed Central  Google Scholar 

  • Siris, S. G. (2000). Depression in schizophrenia: Perspective in the era of “Atypical” antipsychotic agents. The American Journal of Psychiatry, 157(9), 1379–1389.

    Article  PubMed  Google Scholar 

  • Skottun, B. C., & Skoyles, J. R. (2007). Contrast sensitivity and magnocellular functioning in schizophrenia. Vision Research, 47(23), 2923–2933. doi:10.1016/j.visres.2007.07.016.

    Article  PubMed  Google Scholar 

  • Skottun, B. C., & Skoyles, J. R. (2009). Are masking abnormalities in schizophrenia specific to type-B masking? World Journal of Biological Psychiatry, 10(4 Pt 3), 798–808. doi:10.1080/15622970903051944.

    Article  PubMed  Google Scholar 

  • Skottun, B. C., & Skoyles, J. (2013). Is vision in schizophrenia characterized by a generalized reduction? Frontiers in Psychology, 4, 999. doi:10.3389/fpsyg.2013.00999.

    Article  PubMed  PubMed Central  Google Scholar 

  • Slaghuis, W. L. (1998). Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. Journal of Abnormal Psychology, 107(1), 49–62.

    Article  PubMed  Google Scholar 

  • Slaghuis, W. L., Holthouse, T., Hawkes, A., & Bruno, R. (2007). Eye movement and visual motion perception in schizophrenia II: Global coherent motion as a function of target velocity and stimulus density. Experimental Brain Research, 182(3), 415–426. doi:10.1007/s00221-007-1003-3.

    Article  PubMed  Google Scholar 

  • Slifstein, M., van de Giessen, E., Van Snellenberg, J., Thompson, J. L., Narendran, R., Gil, R., … Abi-Dargham, A. (2015). Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiatry, 72(4), 316–324. doi: 10.1001/jamapsychiatry.2014.2414.

    Google Scholar 

  • Snyder, S., Rosenthal, D., & Taylor, A. (1961). Perceptual closure in schizophrenics. Journal of Abnormal and Social Psychology, 63, 131–136.

    Article  PubMed  Google Scholar 

  • Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. (2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702. doi:10.1038/nature07991.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer, K. M., Nestor, P. G., Niznikiewicz, M. A., Salisbury, D. F., Shenton, M., & McCarley, R. (2003). Abnormal neural synchrony in schizophrenia. The Journal of Neuroscience, 23, 7407–7411.

    PubMed  PubMed Central  Google Scholar 

  • Spencer, K. M., Nestor, P. G., Perlmutter, R., Niznikiewicz, M. A., Klump, M. C., Frumin, M., …. McCarley, R. (2004). Neural synchrony indexes disordered perception and cognition in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 101, 17288–17293.

    Google Scholar 

  • Sun, L., Castellanos, N., Grutzner, C., Koethe, D., Rivolta, D., Wibral, M., … Uhlhaas, P. J. (2013). Evidence for dysregulated high-frequency oscillations during sensory processing in medication-naive, first episode schizophrenia. Schizophrenia Research, 150(2–3), 519–525. doi: 10.1016/j.schres.2013.08.023.

    Google Scholar 

  • Sun, L., Grutzner, C., Bolte, S., Wibral, M., Tozman, T., Schlitt, S., … Uhlhaas, P. J. (2012). Impaired gamma-band activity during perceptual organization in adults with autism spectrum disorders: Evidence for dysfunctional network activity in frontal-posterior cortices. Journal of Neuroscience, 32(28), 9563–9573. doi: 10.1523/JNEUROSCI.1073-12.2012.

    Google Scholar 

  • Sun, J., Tang, Y., Lim, K. O., Wang, J., Tong, S., Li, H., & He, B. (2014). Abnormal dynamics of EEG oscillations in schizophrenia patients on multiple time scales. IEEE Transactions on Biomedical Engineering, 61(6), 1756–1764. doi: 10.1109/TBME.2014.2306424.

    Google Scholar 

  • Tadin, D., Kim, J., Doop, M. L., Gibson, C., Lappin, J. S., Blake, R., & Park, S. (2006). Weakened center-surround interactions in visual motion processing in schizophrenia. Journal of Neuroscience, 26(44), 11403–11412. doi: 10.1523/JNEUROSCI.2592-06.2006.

    Google Scholar 

  • Tibber, M. S., Anderson, E. J., Bobin, T., Antonova, E., Seabright, A., Wright, B., … Dakin, S. C. (2013). Visual surround suppression in schizophrenia. Frontiers in Psychology, 4, 88. doi: 10.3389/fpsyg.2013.00088.

  • Tibber, M. S., Anderson, E. J., Bobin, T., Carlin, P., Shergill, S. S., & Dakin, S. C. (2015). Local and global limits on visual processing in schizophrenia. PLoS One, 10(2), e0117951. doi:10.1371/journal.pone.0117951.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tost, H., Alam, T., & Meyer-Lindenberg, A. (2010). Dopamine and psychosis: Theory, pathomechanisms and intermediate phenotypes. Neuroscience and Biobehavioral Reviews, 34(5), 689–700. doi:10.1016/j.neubiorev.2009.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turetsky, B. I., Kohler, C. G., Indersmitten, T., Bhati, M. T., Charbonnier, D., & Gur, R. C. (2007). Facial emotion recognition in schizophrenia: When and why does it go awry? Schizophrenia Research, 94(1-3), 253–263. doi:10.1016/j.schres.2007.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas, P. J., Linden, D. E., Singer, W., Haenschel, C., Lindner, M., Maurer, K., & Rodriguez, E. (2006). Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. Journal of Neuroscience, 26(31), 8168–8175. doi: 10.1523/JNEUROSCI.2002-06.2006.

    Google Scholar 

  • Uhlhaas, P. J., Millard, I., Muetzelfeldt, L., Curran, H. V., & Morgan, C. J. (2007). Perceptual organization in ketamine users: Preliminary evidence of deficits on night of drug use but not 3 days later. Journal of Psychopharmacology, 21(3), 347–352. doi:10.1177/0269881107077739.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Mishara, A. L. (2007). Perceptual anomalies in schizophrenia: Integrating phenomenology and cognitive neuroscience. Schizophrenia Bulletin, 33(1), 142–156. doi:10.1093/schbul/sbl047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Uhlhaas, P. J., Phillips, W. A., Mitchell, G., & Silverstein, S. M. (2006). Perceptual grouping in disorganized schizophrenia. Psychiatry Research, 145(2–3), 105–117. doi:10.1016/j.psychres.2005.10.016.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., Phillips, W. A., Schenkel, L. S., & Silverstein, S. M. (2006). Theory of mind and perceptual context-processing in schizophrenia. Cognitive Neuropsychiatry, 11(4), 416–436. doi:10.1080/13546800444000272.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., Phillips, W. A., & Silverstein, S. M. (2005). The course and clinical correlates of dysfunctions in visual perceptual organization in schizophrenia during the remission of psychotic symptoms. Schizophrenia Research, 75(2–3), 183–192. doi:10.1016/j.schres.2004.11.005.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Silverstein, S. M. (2005a). Perceptual organization in schizophrenia spectrum disorders: Empirical research and theoretical implications. Psychological Bulletin, 131(4), 618–632. doi:10.1037/0033-2909.131.4.618.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Silverstein, S. M. (2005b). Phenomenology, biology, and specificity of dysfunctions in gestalt perception in schizophrenia. Gestalt Theory, 27, 57–69.

    Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52(1), 155–168. doi:10.1016/j.neuron.2006.09.020.

    Article  PubMed  Google Scholar 

  • Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100–113. doi:10.1038/nrn2774.

    Article  PubMed  Google Scholar 

  • Vakhrusheva, J., Zemon, V., Bar, M., Weiskopf, N. G., Tremeau, F., Petkova, E., … Butler, P. D. (2014). Forming first impressions of others in schizophrenia: Impairments in fast processing and in use of spatial frequency information. Schizophrenia Research, 160(1–3), 142–149. doi: 10.1016/j.schres.2014.10.012.

    Google Scholar 

  • Van Horn, S. C., Erisir, A., & Sherman, S. M. (2000). Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology, 416(4), 509–520.

    Article  PubMed  Google Scholar 

  • Van Opstal, F., Van Laeken, N., Verguts, T., van Dijck, J. P., De Vos, F., Goethals, I., & Fias, W. (2014). Correlation between individual differences in striatal dopamine and in visual consciousness. Current Biology, 24(7), R265–R266. doi: 10.1016/j.cub.2014.02.001.

    Google Scholar 

  • Viertio, S., Laitinen, A., Perala, J., Saarni, S. I., Koskinen, S., Lonnqvist, J., & Suvisaari, J. (2007). Visual impairment in persons with psychotic disorder. Social Psychiatry and Psychiatric Epidemiology, 42(11), 902–908. doi: 10.1007/s00127-007-0252-6.

    Google Scholar 

  • Vitay, J., & Hamker, F. H. (2007). On the role of dopamine in cognitive vision. In L. Paletta & E. Rome (Eds.), Attention in cognitive systems: Theories and Systems from an Interdisciplinary viewpoint (pp. 352–366). Berlin, Germany: Springer.

    Google Scholar 

  • Volberg, G., & Greenlee, M. W. (2014). Brain networks supporting perceptual grouping and contour selection. Frontiers in Psychology, 5, 264. doi:10.3389/fpsyg.2014.00264.

    Article  PubMed  PubMed Central  Google Scholar 

  • Volberg, G., Wutz, A., & Greenlee, M. W. (2013). Top-down control in contour grouping. PLoS One, 8(1), e54085. doi:10.1371/journal.pone.0054085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner, P. S., & Spiro, C. S. (2008). Divided minds: Twin sisters and their journey through schizophrenia. New York, NY: St. Martin’s Press.

    Google Scholar 

  • Wang, J., Brown, R., Dobkins, K. R., McDowell, J. E., & Clementz, B. A. (2010). Diminished parietal cortex activity associated with poor motion direction discrimination performance in schizophrenia. Cerebral Cortex, 20(7), 1749–1755. doi:10.1093/cercor/bhp243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Dobkins, K. R., McDowell, J. E., & Clementz, B. A. (2012). Neural response to the second stimulus associated with poor speed discrimination performance in schizophrenia. Psychophysiology, 49(2), 198–206. doi:10.1111/j.1469-8986.2011.01302.x.

    Article  PubMed  Google Scholar 

  • Wang, A. Y., Lohmann, K. M., Yang, C. K., Zimmerman, E. I., Pantazopoulos, H., Herring, N., … Konradi, C. (2011). Bipolar disorder type 1 and schizophrenia are accompanied by decreased density of parvalbumin- and somatostatin-positive interneurons in the parahippocampal region. Acta Neuropathologica, 122(5), 615–626. doi: 10.1007/s00401-011-0881-4.

    Google Scholar 

  • Waters, F., Collerton, D., Ffytche, D. H., Jardri, R., Pins, D., Dudley, R., … Laroi, F. (2014). Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease. Schizophrenia Bulletin, 40(Suppl 4), S233–245. doi: 10.1093/schbul/sbu036.

    Google Scholar 

  • Weiss, K. M. (1989). Advantages of abandoning symptom-based diagnostic systems of research in schizophrenia. American Journal of Orthopsychiatry, 59(3), 324–330.

    Article  PubMed  Google Scholar 

  • Weiss, K. M. (1990). Advantages of reconceptualizing schizophrenia in clinical practice. Journal of Clinical Psychology, 46(1), 21–28.

    Article  PubMed  Google Scholar 

  • Weiss, K. M. (1992). On the distinctions between diagnosis, description and measurement of schizophrenia. Psychopathology, 25(5), 239–248.

    Article  PubMed  Google Scholar 

  • Weiss, K. M., Chapman, H. A., Strauss, M. E., & Gilmore, G. C. (1992). Visual information decoding deficits in schizophrenia. Psychiatry Research, 44(3), 203–216.

    Article  PubMed  Google Scholar 

  • Wilson, N. R., Runyan, C. A., Wang, F. L., & Sur, M. (2012). Division and subtraction by distinct cortical inhibitory networks in vivo. Nature, 488(7411), 343–348. doi:10.1038/nature11347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Witkovsky, P. (2004). Dopamine and retinal function. Documenta Ophthalmologica, 108(1), 17–40.

    Article  PubMed  Google Scholar 

  • Yang, E., Tadin, D., Glasser, D. M., Hong, S. W., Blake, R., & Park, S. (2013). Visual context processing in schizophrenia. Clinical Psychological Science, 1, 5–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoon, J. H., Maddock, R. J., Rokem, A., Silver, M. A., Minzenberg, M. J., Ragland, J. D., & Carter, C. S. (2010). GABA concentration is reduced in visual cortex in schizophrenia and correlates with orientation-specific surround suppression. Journal of Neuroscience, 30(10), 3777–3781. doi: 10.1523/JNEUROSCI.6158-09.201030/10/3777.

  • Yotsumoto, Y., Watanabe, T., & Sasaki, Y. (2008). Different dynamics of performance and brain activation in the time course of perceptual learning. Neuron, 57(6), 827–833. doi:10.1016/j.neuron.2008.02.034.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Emily Kappenman, Brian Keane, Matthew Roché, Pamela Butler, Docia Demmin, Bill Phillips, and Judy Thompson for their helpful comments on earlier drafts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Silverstein Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Silverstein, S.M. (2016). Visual Perception Disturbances in Schizophrenia: A Unified Model. In: Li, M., Spaulding, W. (eds) The Neuropsychopathology of Schizophrenia. Nebraska Symposium on Motivation, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-319-30596-7_4

Download citation

Publish with us

Policies and ethics