Skip to main content

Abstract

Melanoma is a deadly skin disease, and accurate diagnosis and evaluation of melanocytic lesions are critical for optimal patient care. The majority of melanocytic lesions can be evaluated with routine hematoxylin and eosin (H&E) stained sections. However, a subset of these lesions require additional ancillary studies (e.g., immunohistochemical [IHC] studies), either to confirm the diagnosis or to provide insight into the mutation status (e.g., BRAFV600E, BAP-1). IHC studies aid in distinguishing melanoma from melanocytic nevi and its imitators. Furthermore, the use of IHC will provide prognostic information and identify biologically aggressive tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gown AM, Vogel AM, Hoak D, Gough F, McNutt MA. Monoclonal antibodies specific for melanocytic tumors distinguish subpopulations of melanocytes. Am J Pathol. 1986;123(2):195–203.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Adema GJ, de Boer AJ, Vogel AM, Loenen WA, Figdor CG. Molecular characterization of the melanocyte lineage-specific antigen gp100. J Biol Chem. 1994;269(31):20126–33.

    CAS  PubMed  Google Scholar 

  3. Ordonez NG, Ji XL, Hickey RC. Comparison of HMB-45 monoclonal antibody and S-100 protein in the immunohistochemical diagnosis of melanoma. Am J Clin Pathol. 1988;90(4):385–90.

    Article  CAS  PubMed  Google Scholar 

  4. Wick MR, Swanson PE, Rocamora A. Recognition of malignant melanoma by monoclonal antibody HMB-45. An immunohistochemical study of 200 paraffin-embedded cutaneous tumors. J Cutan Pathol. 1988;15(4):201–7.

    Article  CAS  PubMed  Google Scholar 

  5. Fetsch PA, Fetsch JF, Marincola FM, Travis W, Batts KP, Abati A. Comparison of melanoma antigen recognized by T cells (MART-1) to HMB-45: additional evidence to support a common lineage for angiomyolipoma, lymphangiomyomatosis, and clear cell sugar tumor. Mod Pathol. 1998;11(8):699–703.

    CAS  PubMed  Google Scholar 

  6. Argani P, Hawkins A, Griffin CA, Goldstein JD, Haas M, Beckwith JB, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Pathol. 2001;158(6):2089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deavers MT, Malpica A, Ordonez NG, Silva EG. Ovarian steroid cell tumors: an immunohistochemical study including a comparison of calretinin with inhibin. Int J Gynecol Pathol. 2003;22(2):162–7.

    Article  PubMed  Google Scholar 

  8. Ohsie SJ, Sarantopoulos GP, Cochran AJ, Binder SW. Immunohistochemical characteristics of melanoma. J Cutan Pathol. 2008;35(5):433–44.

    Article  PubMed  Google Scholar 

  9. Ivan D, Prieto VG. Use of immunohistochemistry in the diagnosis of melanocytic lesions: applications and pitfalls. Future Oncol. 2010;6(7):1163–75.

    Article  PubMed  Google Scholar 

  10. Smoller BR, McNutt NS, Hsu A. HMB-45 recognizes stimulated melanocytes. J Cutan Pathol. 1989;16(2):49–53.

    Article  CAS  PubMed  Google Scholar 

  11. Prieto VG, Shea CR. Use of immunohistochemistry in melanocytic lesions. J Cutan Pathol. 2008;35 Suppl 2:1–10.

    Article  PubMed  Google Scholar 

  12. Bergman R, Dromi R, Trau H, Cohen I, Lichtig C. The pattern of HMB-45 antibody staining in compound Spitz nevi. Am J Dermatopathol. 1995;17(6):542–6.

    Article  CAS  PubMed  Google Scholar 

  13. Skelton 3rd HG, Smith KJ, Barrett TL, Lupton GP, Graham JH. HMB-45 staining in benign and malignant melanocytic lesions. A reflection of cellular activation. Am J Dermatopathol. 1991;13(6):543–50.

    Article  PubMed  Google Scholar 

  14. Fetsch PA, Marincola FM, Abati A. The new melanoma markers: MART-1 and Melan-A (the NIH experience). Am J Surg Pathol. 1999;23(5):607–10.

    Article  CAS  PubMed  Google Scholar 

  15. Orchard GE. Comparison of immunohistochemical labelling of melanocyte differentiation antibodies melan-A, tyrosinase and HMB 45 with NKIC3 and S100 protein in the evaluation of benign naevi and malignant melanoma. Histochem J. 2000;32(8):475–81.

    Article  CAS  PubMed  Google Scholar 

  16. Busam KJ, Chen YT, Old LJ, Stockert E, Iversen K, Coplan KA, et al. Expression of melan-A (MART1) in benign melanocytic nevi and primary cutaneous malignant melanoma. Am J Surg Pathol. 1998;22(8):976–82.

    Article  CAS  PubMed  Google Scholar 

  17. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84(4):1155–228.

    Article  CAS  PubMed  Google Scholar 

  18. Jungbluth AA, Iversen K, Coplan K, Kolb D, Stockert E, Chen YT, et al. T311—an anti-tyrosinase monoclonal antibody for the detection of melanocytic lesions in paraffin embedded tissues. Pathol Res Pract. 2000;196(4):235–42.

    Article  CAS  PubMed  Google Scholar 

  19. Sato N, Suzuki S, Takimoto H, Masui S, Shibata K, Nakano H, et al. Monoclonal antibody MAT-1 against human tyrosinase can detect melanogenic cells on formalin-fixed paraffin-embedded sections. Pigment Cell Res. 1996;9(2):72–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hofbauer GF, Kamarashev J, Geertsen R, Boni R, Dummer R. Tyrosinase immunoreactivity in formalin-fixed, paraffin-embedded primary and metastatic melanoma: frequency and distribution. J Cutan Pathol. 1998;25(4):204–9.

    Article  CAS  PubMed  Google Scholar 

  21. Clarkson KS, Sturdgess IC, Molyneux AJ. The usefulness of tyrosinase in the immunohistochemical assessment of melanocytic lesions: a comparison of the novel T311 antibody (anti-tyrosinase) with S-100, HMB45, and A103 (anti-melan-A). J Clin Pathol. 2001;54(3):196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ordonez NG. Value of melanocytic-associated immunohistochemical markers in the diagnosis of malignant melanoma: a review and update. Hum Pathol. 2014;45(2):191–205.

    Article  CAS  PubMed  Google Scholar 

  23. Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, et al. Fisher DE: microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994;8(22):2770–80.

    Article  CAS  PubMed  Google Scholar 

  24. Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S. Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol. 1994;14(12):8058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Busam KJ, Iversen K, Coplan KC, Jungbluth AA. Analysis of microphthalmia transcription factor expression in normal tissues and tumors, and comparison of its expression with S-100 protein, gp100, and tyrosinase in desmoplastic malignant melanoma. Am J Surg Pathol. 2001;25(2):197–204.

    Article  CAS  PubMed  Google Scholar 

  26. Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am J Surg Pathol. 2001;25(2):205–11.

    Article  CAS  PubMed  Google Scholar 

  27. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun. 1965;19(6):739–44.

    Article  CAS  PubMed  Google Scholar 

  28. Fullen DR, Lowe L, Su LD. Antibody to S100a6 protein is a sensitive immunohistochemical marker for neurothekeoma. J Cutan Pathol. 2003;30(2):118–22.

    Article  PubMed  Google Scholar 

  29. Fernando SS, Johnson S, Bate J. Immunohistochemical analysis of cutaneous malignant melanoma: comparison of S-100 protein, HMB-45 monoclonal antibody and NKI/C3 monoclonal antibody. Pathology. 1994;26(1):16–9.

    Article  CAS  PubMed  Google Scholar 

  30. Prieto VG, Shea CR. Immunohistochemistry of melanocytic proliferations. Arch Pathol Lab Med. 2011;135(7):853–9.

    PubMed  Google Scholar 

  31. Cochran AJ, Wen DR. S-100 protein as a marker for melanocytic and other tumours. Pathology. 1985;17(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  32. Edgerton ME, Roberts SA, Montone KT. Immunohistochemical performance of antibodies on previously frozen tissue. Appl Immunohistochem Mol Morphol. 2000;8(3):244–8.

    CAS  PubMed  Google Scholar 

  33. Takahashi K, Isobe T, Ohtsuki Y, Akagi T, Sonobe H, Okuyama T. Immunohistochemical study on the distribution of alpha and beta subunits of S-100 protein in human neoplasm and normal tissues. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;45(4):385–96.

    Article  CAS  PubMed  Google Scholar 

  34. Blessing K, Sanders DS, Grant JJ. Comparison of immunohistochemical staining of the novel antibody melan-A with S100 protein and HMB-45 in malignant melanoma and melanoma variants. Histopathology. 1998;32(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  35. Trejo O, Reed JA, Prieto VG. Atypical cells in human cutaneous re-excision scars for melanoma express p75NGFR, C56/N-CAM and GAP-43: evidence of early Schwann cell differentiation. J Cutan Pathol. 2002;29(7):397–406.

    Article  PubMed  Google Scholar 

  36. Ludwig A, Rehberg S, Wegner M. Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors. FEBS Lett. 2004;556(1–3):236–44.

    Article  CAS  PubMed  Google Scholar 

  37. Kiefer JC. Back to basics: Sox genes. Dev Dyn. 2007;236(8):2356–66.

    Article  CAS  PubMed  Google Scholar 

  38. Bondurand N, Pingault V, Goerich DE, Lemort N, Sock E, Le Caignec C, et al. Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome. Hum Mol Genet. 2000;9(13):1907–17.

    Article  CAS  PubMed  Google Scholar 

  39. Nonaka D, Chiriboga L, Rubin BP. Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol. 2008;32(9):1291–8.

    Article  PubMed  Google Scholar 

  40. Agnarsdottir M, Sooman L, Bolander A, Stromberg S, Rexhepaj E, Bergqvist M, et al. SOX10 expression in superficial spreading and nodular malignant melanomas. Melanoma Res. 2010;20(6):468–78.

    Article  CAS  PubMed  Google Scholar 

  41. Karamchandani JR, Nielsen TO, van de Rijn M, West RB. Sox10 and S100 in the diagnosis of soft-tissue neoplasms. Appl Immunohistochem Mol Morphol. 2012;20(5):445–50.

    Article  CAS  PubMed  Google Scholar 

  42. Ramos-Herberth FI, Karamchandani J, Kim J, Dadras SS. SOX10 immunostaining distinguishes desmoplastic melanoma from excision scar. J Cutan Pathol. 2010;37(9):944–52.

    Article  PubMed  Google Scholar 

  43. Mohamed A, Gonzalez RS, Lawson D, Wang J, Cohen C. SOX10 expression in malignant melanoma, carcinoma, and normal tissues. Appl Immunohistochem Mol Morphol. 2013;21(6):506–10.

    Article  CAS  PubMed  Google Scholar 

  44. Jennings C, Kim J. Identification of nodal metastases in melanoma using sox-10. Am J Dermatopathol. 2011;33(5):474–82.

    Article  PubMed  Google Scholar 

  45. Tacha D, Qi W, Ra S, Bremer R, Yu C, Chu J, et al. A newly developed mouse monoclonal SOX10 antibody is a highly sensitive and specific marker for malignant melanoma, including spindle cell and desmoplastic melanomas. Arch Pathol Lab Med. 2015;139(4):530–6.

    Article  PubMed  Google Scholar 

  46. Ordonez NG. Value of SOX10 immunostaining in tumor diagnosis. Adv Anat Pathol. 2013;20(4):275–83.

    Article  CAS  PubMed  Google Scholar 

  47. Orchard G. Evaluation of melanocytic neoplasms: application of a pan-melanoma antibody cocktail. Br J Biomed Sci. 2002;59(4):196–202.

    PubMed  Google Scholar 

  48. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

    CAS  PubMed  Google Scholar 

  49. Kanter L, Blegen H, Wejde J, Lagerlof B, Larsson O. Utility of a proliferation marker in distinguishing between benign naevocellular naevi and naevocellular naevus-like lesions with malignant properties. Melanoma Res. 1995;5(5):345–50.

    Article  CAS  PubMed  Google Scholar 

  50. Smolle J, Soyer HP, Kerl H. Proliferative activity of cutaneous melanocytic tumors defined by Ki-67 monoclonal antibody. A quantitative immunohistochemical study. Am J Dermatopathol. 1989;11(4):301–7.

    Article  CAS  PubMed  Google Scholar 

  51. Rieger E, Hofmann-Wellenhof R, Soyer HP, Kofler R, Cerroni L, Smolle J, et al. Comparison of proliferative activity as assessed by proliferating cell nuclear antigen (PCNA) and Ki-67 monoclonal antibodies in melanocytic skin lesions. A quantitative immunohistochemical study. J Cutan Pathol. 1993;20(3):229–36.

    Article  CAS  PubMed  Google Scholar 

  52. Vollmer RT. Use of Bayes rule and MIB-1 proliferation index to discriminate Spitz nevus from malignant melanoma. Am J Clin Pathol. 2004;122(4):499–505.

    Article  PubMed  Google Scholar 

  53. Puri PK, Valdes CL, Burchette JL, Grichnik JM, Turner JW, Selim MA. Accurate identification of proliferative index in melanocytic neoplasms with Melan-A/Ki-67 double stain. J Cutan Pathol. 2010;37(9):1010–2.

    Article  PubMed  Google Scholar 

  54. Nielsen PS, Riber-Hansen R, Steiniche T. Immunohistochemical double stains against Ki67/MART1 and HMB45/MITF: promising diagnostic tools in melanocytic lesions. Am J Dermatopathol. 2011;33(4):361–70.

    Article  PubMed  Google Scholar 

  55. Nielsen PS, Spaun E, Riber-Hansen R, Torben S. Automated quantification of MART1-verified Ki-67 indices: useful diagnostic aid in melanocytic lesions. Hum Pathol. 2014;45(6):1153–61.

    Article  CAS  PubMed  Google Scholar 

  56. Juan G, Traganos F, James WM, Ray JM, Roberge M, Sauve DM, et al. Histone H3 phosphorylation and expression of cyclins A and B1 measured in individual cells during their progression through G2 and mitosis. Cytometry. 1998;32(2):71–7.

    Article  CAS  PubMed  Google Scholar 

  57. Balch CM, Gershenwald JE, Soong SJ, Thompson JF, Atkins MB, Byrd DR, et al. Final version of 2009 AJCC melanoma staging and classification. J Clin Oncol. 2009;27(36):6199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schimming TT, Grabellus F, Roner M, Pechlivanis S, Sucker A, Bielefeld N, et al. pHH3 immunostaining improves interobserver agreement of mitotic index in thin melanomas. Am J Dermatopathol. 2012;34(3):266–9.

    Article  PubMed  Google Scholar 

  59. Tetzlaff MT, Curry JL, Ivan D, Wang WL, Torres-Cabala CA, Bassett RL, et al. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma. Mod Pathol. 2013;26(9):1153–60.

    Article  CAS  PubMed  Google Scholar 

  60. Ladstein RG, Bachmann IM, Straume O, Akslen LA. Prognostic importance of the mitotic marker phosphohistone H3 in cutaneous nodular melanoma. J Invest Dermatol. 2012;132(4):1247–52.

    Article  CAS  PubMed  Google Scholar 

  61. Tetzlaff MT, Torres-Cabala CA, Pattanaprichakul P, Rapini RP, Prieto VG, Curry JL. Emerging clinical applications of selected biomarkers in melanoma. Clin Cosmet Investig Dermatol. 2015;8:35–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Martinez DR, Richards HW, Lin Q, Torres-Cabala CA, Prieto VG, Curry JL, et al. H3K79me3T80ph is a novel histone dual modification and a mitotic indicator in melanoma. J Skin Cancer. 2012;2012:823534.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hammond SL, Byrum SD, Namjoshi S, Graves HK, Dennehey BK, Tackett AJ, et al. Mitotic phosphorylation of histone H3 threonine 80. Cell Cycle. 2014;13(3):440–52.

    Article  CAS  PubMed  Google Scholar 

  64. Henderson SA, Tetzlaff MT, Pattanaprichakul P, Fox P, Torres-Cabala CA, Bassett RL, et al. Detection of mitotic figures and G2+ tumor nuclei with histone markers correlates with worse overall survival in patients with Merkel cell carcinoma. J Cutan Pathol. 2014;41(11):846–52.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Niakosari F, Kahn HJ, Marks A, From L. Detection of lymphatic invasion in primary melanoma with monoclonal antibody D2-40: a new selective immunohistochemical marker of lymphatic endothelium. Arch Dermatol. 2005;141(4):440–4.

    Article  PubMed  Google Scholar 

  66. Petersson F, Diwan AH, Ivan D, Gershenwald JE, Johnson MM, Harrell R, et al. Immunohistochemical detection of lymphovascular invasion with D2-40 in melanoma correlates with sentinel lymph node status, metastasis and survival. J Cutan Pathol. 2009;36(11):1157–63.

    Article  PubMed  Google Scholar 

  67. Newman PJ, Berndt MC, Gorski J, White 2nd GC, Lyman S, Paddock C, et al. PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. Science. 1990;247(4947):1219–22.

    Article  CAS  PubMed  Google Scholar 

  68. Sauter B, Foedinger D, Sterniczky B, Wolff K, Rappersberger K. Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem. 1998;46(2):165–76.

    Article  CAS  PubMed  Google Scholar 

  69. Massi D, Franchi A, Borgognoni L, Paglierani M, Reali UM, Santucci M. Tumor angiogenesis as a prognostic factor in thick cutaneous malignant melanoma. A quantitative morphologic analysis. Virchows Arch. 2002;440(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  70. Wermker K, Brauckmann T, Klein M, Hassfeld S, Schulze HJ, Hallermann C. Prognostic value of S100/CD31 and S100/podoplanin double immunostaining in mucosal malignant melanoma of the head and neck. Head Neck. 2015;37(9):1368–74.

    Google Scholar 

  71. Nickoloff BJ. The human progenitor cell antigen (CD34) is localized on endothelial cells, dermal dendritic cells, and perifollicular cells in formalin-fixed normal skin, and on proliferating endothelial cells and stromal spindle-shaped cells in Kaposi’s sarcoma. Arch Dermatol. 1991;127(4):523–9.

    Article  CAS  PubMed  Google Scholar 

  72. Greaves MF, Brown J, Molgaard HV, Spurr NK, Robertson D, Delia D, et al. Molecular features of CD34: a hemopoietic progenitor cell-associated molecule. Leukemia. 1992;6 Suppl 1:31–6.

    PubMed  Google Scholar 

  73. Rose AE, Christos PJ, Lackaye D, Shapiro RL, Berman R, Mazumdar M, et al. Clinical relevance of detection of lymphovascular invasion in primary melanoma using endothelial markers D2-40 and CD34. Am J Surg Pathol. 2011;35(10):1441–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  75. Capper D, Berghoff AS, Magerle M, Ilhan A, Wohrer A, Hackl M, et al. Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol. 2012;123(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  76. Long GV, Wilmott JS, Capper D, Preusser M, Zhang YE, Thompson JF, et al. Immunohistochemistry is highly sensitive and specific for the detection of V600E BRAF mutation in melanoma. Am J Surg Pathol. 2013;37(1):61–5.

    Article  PubMed  Google Scholar 

  77. Busam KJ, Hedvat C, Pulitzer M, von Deimling A, Jungbluth AA. Immunohistochemical analysis of BRAF(V600E) expression of primary and metastatic melanoma and comparison with mutation status and melanocyte differentiation antigens of metastatic lesions. Am J Surg Pathol. 2013;37(3):413–20.

    Article  PubMed  Google Scholar 

  78. Marin C, Beauchet A, Capper D, Zimmermann U, Julie C, Ilie M, et al. Detection of BRAF p.V600E mutations in melanoma by immunohistochemistry has a good interobserver reproducibility. Arch Pathol Lab Med. 2014;138(1):71–5.

    Article  PubMed  Google Scholar 

  79. Feller JK, Yang S, Mahalingam M. Immunohistochemistry with a mutation-specific monoclonal antibody as a screening tool for the BRAFV600E mutational status in primary cutaneous malignant melanoma. Mod Pathol. 2013;26(3):414–20.

    Article  CAS  PubMed  Google Scholar 

  80. Tetzlaff MT, Pattanaprichakul P, Wargo J, Fox PP, Patel KP, Estrella JS, Broaddus RR, Williams MD, Davies MA, Routbort MJ et al. Utility of BRAF V600E immunohistochemical expression pattern as a surrogate of BRAF mutation status in 154 patients with advanced melanoma. Hum Pathol. 2015;46(8):1101–10.

    Google Scholar 

  81. Chen Q, Xia C, Deng Y, Wang M, Luo P, Wu C, et al. Immunohistochemistry as a quick screening method for clinical detection of BRAF(V600E) mutation in melanoma patients. Tumour Biol. 2014;35(6):5727–33.

    Article  CAS  PubMed  Google Scholar 

  82. Jensen DE, Rauscher 3rd FJ. BAP1, a candidate tumor suppressor protein that interacts with BRCA1. Ann N Y Acad Sci. 1999;886:191–4.

    Article  CAS  PubMed  Google Scholar 

  83. Wiesner T, Obenauf AC, Murali R, Fried I, Griewank KG, Ulz P, et al. Germline mutations in BAP1 predispose to melanocytic tumors. Nat Genet. 2011;43(10):1018–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Aoude LG, Wadt K, Bojesen A, Cruger D, Borg A, Trent JM, et al. A BAP1 mutation in a Danish family predisposes to uveal melanoma and other cancers. PLoS One. 2013;8(8):e72144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wiesner T, Murali R, Fried I, Cerroni L, Busam K, Kutzner H, et al. A distinct subset of atypical Spitz tumors is characterized by BRAF mutation and loss of BAP1 expression. Am J Surg Pathol. 2012;36(6):818–30.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bastian BC, LeBoit PE, Pinkel D. Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol. 2000;157(3):967–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Llamas-Velasco M, Perez-Gonzalez YC, Requena L, Kutzner H. Histopathologic clues for the diagnosis of Wiesner nevus. J Am Acad Dermatol. 2014;70(3):549–54.

    Article  PubMed  Google Scholar 

  88. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353(20):2135–47.

    Article  CAS  PubMed  Google Scholar 

  89. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008;14(21):6821–8.

    Article  CAS  PubMed  Google Scholar 

  90. Satzger I, Schaefer T, Kuettler U, Broecker V, Voelker B, Ostertag H, et al. Analysis of c-KIT expression and KIT gene mutation in human mucosal melanomas. Br J Cancer. 2008;99(12):2065–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Carlson JA, Linette GP, Aplin A, Ng B, Slominski A. Melanocyte receptors: clinical implications and therapeutic relevance. Dermatol Clin. 2007;25(4):541–57. viii-ix.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alexeev V, Yoon K. Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol. 2006;126(5):1102–10.

    Article  CAS  PubMed  Google Scholar 

  93. Grichnik JM, Burch JA, Burchette J, Shea CR. The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol. 1998;111(2):233–8.

    Article  CAS  PubMed  Google Scholar 

  94. Curtin JA, Busam K, Pinkel D, Bastian BC. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006;24(26):4340–6.

    Article  CAS  PubMed  Google Scholar 

  95. Torres-Cabala CA, Wang WL, Trent J, Yang D, Chen S, Galbincea J, et al. Correlation between KIT expression and KIT mutation in melanoma: a study of 173 cases with emphasis on the acral-lentiginous/mucosal type. Mod Pathol. 2009;22(11):1446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Antonescu CR, Busam KJ, Francone TD, Wong GC, Guo T, Agaram NP, et al. L576P KIT mutation in anal melanomas correlates with KIT protein expression and is sensitive to specific kinase inhibition. Int J Cancer. 2007;121(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  97. Kong Y, Si L, Zhu Y, Xu X, Corless CL, Flaherty KT, et al. Large-scale analysis of KIT aberrations in Chinese patients with melanoma. Clin Cancer Res. 2011;17(7):1684–91.

    Article  CAS  PubMed  Google Scholar 

  98. Alessandrini L, Parrozzani R, Bertorelle R, Valentini E, Candiotto C, Giacomelli L, et al. C-Kit SCF receptor (CD117) expression and KIT gene mutation in conjunctival pigmented lesions. Acta Ophthalmol. 2013;91(8):e641–5.

    Article  CAS  PubMed  Google Scholar 

  99. Santi R, Simi L, Fucci R, Paglierani M, Pepi M, Pinzani P, et al. KIT genetic alterations in anorectal melanomas. J Clin Pathol. 2014;68(2):130–4.

    Article  PubMed  CAS  Google Scholar 

  100. Schoenewolf NL, Bull C, Belloni B, Holzmann D, Tonolla S, Lang R, et al. Sinonasal, genital and acrolentiginous melanomas show distinct characteristics of KIT expression and mutations. Eur J Cancer. 2012;48(12):1842–52.

    Article  CAS  PubMed  Google Scholar 

  101. Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev. 2006;20(16):2149–82.

    Article  CAS  PubMed  Google Scholar 

  102. Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF, et al. High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res. 2006;66(20):9818–28.

    Article  CAS  PubMed  Google Scholar 

  103. Lade-Keller J, Riber-Hansen R, Guldberg P, Schmidt H, Hamilton-Dutoit SJ, Steiniche T. Immunohistochemical analysis of molecular drivers in melanoma identifies p16 as an independent prognostic biomarker. J Clin Pathol. 2014;67(6):520–8.

    Article  PubMed  Google Scholar 

  104. Gammon B, Beilfuss B, Guitart J, Gerami P. Enhanced detection of spitzoid melanomas using fluorescence in situ hybridization with 9p21 as an adjunctive probe. Am J Surg Pathol. 2012;36(1):81–8.

    Article  PubMed  Google Scholar 

  105. Beltraminelli H, Shabrawi-Caelen LE, Kerl H, Cerroni L. Melan-a-positive “pseudomelanocytic nests”: a pitfall in the histopathologic and immunohistochemical diagnosis of pigmented lesions on sun-damaged skin. Am J Dermatopathol. 2009;31(3):305–8.

    Article  PubMed  Google Scholar 

  106. Buonaccorsi JN, Prieto VG, Torres-Cabala C, Suster S, Plaza JA. Diagnostic utility and comparative immunohistochemical analysis of MITF-1 and SOX10 to distinguish melanoma in situ and actinic keratosis: a clinicopathological and immunohistochemical study of 70 cases. Am J Dermatopathol. 2014;36(2):124–30.

    Article  PubMed  Google Scholar 

  107. Nybakken GE, Sargen M, Abraham R, Zhang PJ, Ming M, Xu X. MITF accurately highlights epidermal melanocytes in atypical intraepidermal melanocytic proliferations. Am J Dermatopathol. 2013;35(1):25–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Leleux TM, Prieto VG, Diwan AH. Aberrant expression of HMB-45 in traumatized melanocytic nevi. J Am Acad Dermatol. 2012;67(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  109. Rudolph P, Schubert C, Schubert B, Parwaresch R. Proliferation marker Ki-S5 as a diagnostic tool in melanocytic lesions. J Am Acad Dermatol. 1997;37(2 Pt 1):169–78.

    Article  CAS  PubMed  Google Scholar 

  110. Chan MP, Chan MM, Tahan SR. Melanocytic nevi in pregnancy: histologic features and Ki-67 proliferation index. J Cutan Pathol. 2010;37(8):843–51.

    Article  PubMed  Google Scholar 

  111. Nguyen TL, Theos A, Kelly DR, Busam K, Andea AA. Mitotically active proliferative nodule arising in a giant congenital melanocytic nevus: a diagnostic pitfall. Am J Dermatopathol. 2013;35(1):e16–21.

    Article  PubMed  Google Scholar 

  112. Sherrill AM, Crespo G, Prakash AV, Messina JL. Desmoplastic nevus: an entity distinct from spitz nevus and blue nevus. Am J Dermatopathol. 2011;33(1):35–9.

    Article  PubMed  Google Scholar 

  113. Harris GR, Shea CR, Horenstein MG, Reed JA, Burchette Jr JL, Prieto VG. Desmoplastic (sclerotic) nevus: an underrecognized entity that resembles dermatofibroma and desmoplastic melanoma. Am J Surg Pathol. 1999;23(7):786–94.

    Article  CAS  PubMed  Google Scholar 

  114. Kucher C, Zhang PJ, Pasha T, Elenitsas R, Wu H, Ming ME, et al. Expression of Melan-A and Ki-67 in desmoplastic melanoma and desmoplastic nevi. Am J Dermatopathol. 2004;26(6):452–7.

    Article  PubMed  Google Scholar 

  115. Loghavi S, Curry JL, Torres-Cabala CA, Ivan D, Patel KP, Mehrotra M, et al. Melanoma arising in association with blue nevus: a clinical and pathologic study of 24 cases and comprehensive review of the literature. Mod Pathol. 2014;27(11):1468–78.

    Article  PubMed  Google Scholar 

  116. Zembowicz A, Carney JA, Mihm MC. Pigmented epithelioid melanocytoma: a low-grade melanocytic tumor with metastatic potential indistinguishable from animal-type melanoma and epithelioid blue nevus. Am J Surg Pathol. 2004;28(1):31–40.

    Article  PubMed  Google Scholar 

  117. Sau P, Graham JH, Helwig EB. Pigmented spindle cell nevus: a clinicopathologic analysis of ninety-five cases. J Am Acad Dermatol. 1993;28(4):565–71.

    Article  CAS  PubMed  Google Scholar 

  118. Tetzlaff MT, Xu X, Elder DE, Elenitsas R. Angiomatoid spitz nevus: a clinicopathological study of six cases and a review of the literature. J Cutan Pathol. 2009;36(4):471–6.

    Article  PubMed  Google Scholar 

  119. Plaza JA, De Stefano D, Suster S, Prieto VG, Kacerovska D, Michal M, et al. Intradermal spitz nevi: a rare subtype of spitz nevi analyzed in a clinicopathologic study of 74 cases. Am J Dermatopathol. 2014;36(4):283–94. quiz 295-287.

    Article  PubMed  Google Scholar 

  120. Paradela S, Fonseca E, Pita S, Kantrow SM, Goncharuk VN, Diwan H, et al. Spitzoid melanoma in children: clinicopathological study and application of immunohistochemistry as an adjunct diagnostic tool. J Cutan Pathol. 2009;36(7):740–52.

    Article  PubMed  Google Scholar 

  121. Al Dhaybi R, Agoumi M, Gagne I, McCuaig C, Powell J, Kokta V. p16 expression: a marker of differentiation between childhood malignant melanomas and Spitz nevi. J Am Acad Dermatol. 2011;65(2):357–63.

    Article  CAS  PubMed  Google Scholar 

  122. Mason A, Wititsuwannakul J, Klump VR, Lott J, Lazova R. Expression of p16 alone does not differentiate between Spitz nevi and Spitzoid melanoma. J Cutan Pathol. 2012;39(12):1062–74.

    Article  PubMed  Google Scholar 

  123. Horst BA, Terrano D, Fang Y, Silvers DN, Busam KJ. 9p21 gene locus in Spitz nevi of older individuals: absence of cytogenetic and immunohistochemical findings associated with malignancy. Hum Pathol. 2013;44(12):2822–8.

    Article  CAS  PubMed  Google Scholar 

  124. Busam KJ, Sung J, Wiesner T, von Deimling A, Jungbluth A. Combined BRAF(V600E)-positive melanocytic lesions with large epithelioid cells lacking BAP1 expression and conventional nevomelanocytes. Am J Surg Pathol. 2013;37(2):193–9.

    Article  PubMed  Google Scholar 

  125. Romano RA, Ortt K, Birkaya B, Smalley K, Sinha S. An active role of the DeltaN isoform of p63 in regulating basal keratin genes K5 and K14 and directing epidermal cell fate. PLoS One. 2009;4(5):e5623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Romano RC, Carter JM, Folpe AL. Aberrant intermediate filament and synaptophysin expression is a frequent event in malignant melanoma: an immunohistochemical study of 73 cases. Mod Pathol. 2015;28(8):1033–42.

    Google Scholar 

  127. Robson A, Allen P, Hollowood K. S100 expression in cutaneous scars: a potential diagnostic pitfall in the diagnosis of desmoplastic melanoma. Histopathology. 2001;38(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  128. Pawlik TM, Ross MI, Prieto VG, Ballo MT, Johnson MM, Mansfield PF, et al. Assessment of the role of sentinel lymph node biopsy for primary cutaneous desmoplastic melanoma. Cancer. 2006;106(4):900–6.

    Article  PubMed  Google Scholar 

  129. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364(26):2507–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–16.

    Google Scholar 

  131. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386(9992):444–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan L. Curry M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Curry, J.L., Tetzlaff, M.T., Nagarajan, P., Torres-Cabala, C.A. (2016). Immunohistology of Melanocytic Lesions. In: Plaza, J., Prieto, V. (eds) Applied Immunohistochemistry in the Evaluation of Skin Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-319-30590-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30590-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30588-2

  • Online ISBN: 978-3-319-30590-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics