Skip to main content

More on Strongly Real Beauville Groups

  • Conference paper
  • First Online:
Symmetries in Graphs, Maps, and Polytopes (SIGMAP 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 159))

Included in the following conference series:

Abstract

Beauville surfaces are a class of complex surfaces defined by letting a finite group G act on a product of Riemann surfaces. These surfaces possess many attractive geometric properties several of which are dictated by properties of the group G. A particularly interesting subclass are the ‘strongly real’ Beauville surfaces that have an analogue of complex conjugation defined on them. In this survey we discuss these objects and in particular the groups that may be used to define them. En route we discuss several open problems, questions and conjectures and in places make some progress made on addressing these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Aschbacher and R. Guralnick “Some applications of the first cohomology group” J. Algebra 90 (1984), no. 2, 446–460.

    Google Scholar 

  2. N. W. Barker, N. Bosten and B. T. Fairbairn “A note on Beauville \(p\)-groups” Exp. Math., 21(3): 298–306 (2012) doi:10.1080/10586458.2012.669267.

    Google Scholar 

  3. N. W. Barker, N. Boston, N. Peyerimhoff and A. Vdovina “An infinite family of 2-groups with mixed Beauville structures” Int. Math. Res. Notices., 2014 doi:10.1093/imrn/rnu045. arXiv:1304.4480.

    Google Scholar 

  4. N. W. Barker, N. Boston, N. Peyerimhoff and A. Vdovina “Regular algebraic surfaces isogenous to a higher product constructed from group representations using projective planes” preprint 2011 arXiv:1109.6053.

  5. N. W. Barker, N. Boston, N. Peyerimhoff and A. Vdovina “New examples of Beauville surfaces” Monatsh. Math. 166 (2012), no. 3-4, pp. 319–327 doi:10.1007/s00605-011-0284-6.

    Google Scholar 

  6. I. Bauer “Product-Quotient Surfaces: Results and Problems” preprint 2012 arXiv:1204.3409.

  7. I. Bauer, F. Catanese and F. Grunewald “Beauville surfaces without real structures” in Geometric methods in algebra and number theory pp. 1–42, Progr. Math., 235, Birkhuser Boston, Boston, MA, 2005.

    Google Scholar 

  8. I. Bauer, F. Catanese and F. Grunewald “Chebycheff and Belyi Polynomials, Dessins d’Enfants, Beauville Surfaces and Group Theory” Mediterr. J. math. 3 (2006), 121–146.

    Google Scholar 

  9. I. Bauer, F. Catanese and F. Grunewald “The classification of surfaces with \(p_g = q = 0\) isogenous to a product of curves” Pre Apple. Math. Q. 4 (2008), no. 2, Special Issue: In Honor of Fedor Bogomolov. Part 1, 547–586.

    Google Scholar 

  10. I. Bauer, F. Catanese and R. Pignatelli “Surfaces of General Type with Geometric Genus Zero: A Survey” in Complex and differential geometry 1–48, Springer Proc. Math., 8, Springer-Verlag, Heidelberg, 2011.

    Google Scholar 

  11. I. C. Bauer, F. Catanese and R. Pignatelli “Complex surfaces of general type: some recent progress” in Global Aspects of Complex Geometry, 1–58, Springer, Berlin, 2006.

    Google Scholar 

  12. A. Beauville “Surfaces algébriques complexes” (Astérisque 54 1978).

    Google Scholar 

  13. A. Beauville “Complex Algebraic Surfaces” (London Mathematical Society Student Texts 34, Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  14. G. V. Belyĭ “On Galois extensions of a maximal cyclotomic field” Math. USSR Izvestija 14 (1980), 247–256.

    Google Scholar 

  15. N. Boston “A Survey of Beauville \(p\)-Groups” in Beauville Surfaces and Groups, Springer Proceedings in Mathematics & Statistics, Vol. 123 (eds I. Bauer, S. Garion and A. Vdovina), Springer-Verlag (2015) pp. 35–40.

    Google Scholar 

  16. E. Bujalance, F. J. Cirre, J. J. Etayo, G. Gromadzki and E. Martínez “A Survey on the Minimum Genus and Maximum Order Problems for Bordered Klein Surfaces” in Proceedings of Groups St Andrews 2009 London Mathematical Society Lecture Note Series 387’ (eds. C. M. Campbell, M. R. Quick, E. F. Robertson, C. M. Roney-Dougal, G. C. Smith and G. Traustason) Cambridge University Press, Cambridge, (2011) pp. 161–182.

    Google Scholar 

  17. F. Catanese “Fibered surfaces, varieties isogenous to a product and related moduli spaces” Amer. J. Math. 122 (2000), no. 1, 1–44.

    Google Scholar 

  18. M. D. E. Conder “Hurwitz groups: a brief survey” Bull. Amer. Math. Soc. 23 (1990), 359–370.

    Google Scholar 

  19. M. D. E. Conder “An update on Hurwitz groups” Groups Complexity Cryptology, Volume 2, Issue 1 (2010) 35–49.

    Google Scholar 

  20. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, “Atlas of Finite Groups” (Clarendon Press, Oxford) 1985.

    Google Scholar 

  21. B. T. Fairbairn “Coxeter groups as Beauville groups” Monatshefte für Mathematik 178:4 pp. 1–17 (2015) 10.1007/s00605-015-0848-y.

  22. B. T. Fairbairn “Some Exceptional Beauville Structures” J. Group Theory, 15(5), pp. 631–639 (2012) arXiv:1007.5050 doi:10.1515/jgt-2012-0018.

  23. B. T. Fairbairn, “Recent work on Beauville surfaces, structures and groups” in ‘Groups St Andrews 2013 London Mathematical Society Lecture Note Series 422’ (eds. C. M. Campbell, M. R. Quick, E. F. Robertson and C. M. Roney-Dougald) Cambridge University Press, Cambridge (2015).

    Google Scholar 

  24. B. T. Fairbairn, “Strongly Real Beauville Groups” in Beauville Surfaces and Groups, Springer Proceedings in Mathematics & Statistics, Vol. 123 (eds I. Bauer, S. Garion and A. Vdovina), Springer-Verlag (2015) pp. 41–61.

    Google Scholar 

  25. B. T. Fairbairn, K. Magaard and C. W. Parker “Generation of finite simple groups with an application to groups acting on Beauville surfaces” Proc. London Math. Soc. (2013) 107 (4): 744-798. doi:10.1112/plms/pds097.

    Google Scholar 

  26. B. T. Fairbairn, K. Magaard and C. W. Parker “Corrigendum to Generation of finite simple groups with an application to groups acting on Beauville surfaces” Proc. London Math. Soc. (2013) 107 (5): 1220 doi:10.1112/plms/pdt037.

    Google Scholar 

  27. B. T. Fairbairn and E. Pierro “New Examples of Mixed Beauville Groups” J. Group Theory 18(5), pp. 761–795 (2015).

    Google Scholar 

  28. Gustavo A. Fernández-Alcober and Şükran Gül “Beauville structures in finite \(p\)-groups” preprint 2015, arXiv:1507.02942.

  29. Y. Fuertes and G. González-Diez “On Beauville structures on the groups \(S_n\) and \(A_n\)” Math. Z. 264 (2010), no. 4, 959–968.

    Google Scholar 

  30. Y. Fuertes, G. González-Diez and A. Jaikin-Zapirain “On Beauville surfaces” Groups Geom. Dyn. 5 (2011), no. 1, 107–119.

    Google Scholar 

  31. Y. Fuertes and G. Jones “Beauville surfaces and finite groups” J. Algebra 340 (2011) 13–27.

    Google Scholar 

  32. S. Galkin and E. Schinder “Exceptional collections of line bundles on the Beauville surface” Advances in Mathematics (2013) Vol. 224. No. 10 1033–1050 arXiv:1210.3339.

    Google Scholar 

  33. S. Garion, M. Larsen and A. Lubotzky “Beauville surfaces and finite simple groups” J. Reine Angew. Math. 666 (2012), 225–243.

    Google Scholar 

  34. S. Garion and M. Penegini “New Beauville surfaces, moduli spaces and finite groups” Comm. Algebra. 42, Issue 5 (2014), 2126–2155 arXiv:0910.5402.

    Google Scholar 

  35. E. Girondo and G. González-Diez “Introduction to Compact Riemann Surfaces and Dessins d’Enfants” (London Mathematical Society Student texts 79) Cambridge University Press, Cambridge 2011.

    Google Scholar 

  36. G. González-Diez and A. Jaikin-Zapirain “The absolute Galois group acts faithfully on regular dessins and on Beauville surfaces”. Proc. London Math. Soc. (2015) 111(4): 775–796. doi:10.1112/plms/pdv041.

    Google Scholar 

  37. G. González-Diez, G. A. Jones and D. Torres-Teigell “Beauville surfaces with abelian Beauville group” Math. Scand. 114 (2014), no. 2, 191–204 arXiv:1102.4552.

    Google Scholar 

  38. G. González-Diez and D. Torres-Teigell “An introduction to Beauville surfaces via uniformization, in Quasiconformal mappings, Riemann surfaces, and Teichmüller spaces” 123–151, Contemp. Math., 575, Amer. Math. Soc., Providence, RI, 2012.

    Google Scholar 

  39. A. Grothendieck “Esquisse d’un Programme” in Geometric Galois Actions 1. Around Grothendieck’s Esquisse d’un Programme, eds P. Lochak and L. Schneps, London Math. Soc. Lecture Note Ser. 242, Cambridge University Press, 1997, pp. 5–84.

    Google Scholar 

  40. R. Guralnick and G. Malle “Simple groups admit Beauville structures” J. Lond. Math. Soc. (2) 85 (2012), no. 3, 694–721.

    Google Scholar 

  41. P. Hall “The Eulerian functions of a group” Quarterly Journal of Mathematics 7 (1936), 134–151.

    Google Scholar 

  42. J. E. Humphreys “Reflection groups and Coxeter groups Cambridge Studies in Advanced Mathematics 29” Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  43. G. A. Jones “Characteristically simple Beauville groups, I: cartesian powers of alternating groups” in Geometry, Groups and Dynamics (eds C. S. Aravinda, W. M. Goldman et. al.) Contemp. Math. 639, pp. 289–306 (2015) arXiv:1304.5444v1.

  44. G. A. Jones “Characteristically simple Beauville groups, II: low rank and sporadic groups” in Beauville Surfaces and Groups, Springer Proceedings in Mathematics & Statistics, Vol. 123 (eds I. Bauer, S. Garion and A. Vdovina), Springer-Verlag (2015) pp. 97–120 arXiv:1304.5450v1.

  45. G. A. Jones “Automorphism groups of Beauville surfaces” J. Group Theory. Volume 16, Issue 3, Pages 353–381, doi:10.1515/jgt-2012-0049, 2013 arXiv:1102.3055.

  46. G. A. Jones “Beauville surfaces and groups: a survey” in ‘Rigidity and Symmetry, Fields Institute Communications vol. 70’ (eds. R. Connelly, A. I. Weiss and W. Whiteley) pp. 205–226, Springer 2014.

    Google Scholar 

  47. G. A. Jones and D. Singerman “Belyi functions, hypermaps and Galois groups” Bull. Lond. Math. Soc. 28 (1996) 561–590.

    Google Scholar 

  48. G. A. Jones, D. Singerman and P. D. Watson “Symmetries of quasiplatonic Riemann surfaces” Revista Mathemática Iberoamericana Volume 31, Issue 4, 2015, pp. 1403–1414 doi:10.4171/RMI/873. arXiv:1401.2575.

    Google Scholar 

  49. G. A. Miller “On the groups generated by two operators” Bull. Amer. Math. Soc. Volume 7, Number 10 (1901) 424–426.

    Google Scholar 

  50. A. Murray Macbeath “Hurwitz Groups and Surfaces” in ‘The Eightfold Way: The Beauty of Klein’s Quartic Curve’ (ed. S. Levy) MSRI Publications, 35, Cambridge University Press, Cambridge (1998) pp.103–114.

    Google Scholar 

  51. F. Schaffhauser “Lectures on Klein surfaces and their fundamental groups” Advanced Courses in Mathematics — CRM Barcelona, to appear http://matematicas.uniandes.edu.co/~florent/resources/papers/Barcelona.pdf.

  52. D. Singerman “Symmetries of Riemann surfaces with large automorphism group” Math. Ann. 210 (1974) 17–32.

    Google Scholar 

  53. J. Širáň “How symmetric can maps on surfaces be?” in ‘Surveys in Combinatorics 2013’ (Simon R. Blackburn, Stefanie Gerke and Mark Wildon eds.), London Mathematical Society Lecture Note Series 409 (Cambridge University Press, Cambridge, 2013), 161–238.

    Google Scholar 

  54. R. Steinberg “Generators for simple groups” Canad. J. Math., 14 (1962), pp. 277–283.

    Google Scholar 

  55. J. Stix and A. Vdovina “Series of \(p\)-groups with Beauville structure” Monatshefte der Mathematik, 2015, doi:10.1007/s00605-015-0805-9. arXiv:1405.3872.

    Google Scholar 

  56. D. Torres-Teigell “Triangle groups, dessins d’enfants and Beauville surfaces” PhD thesis, Universidad Autonoma de Madrid, 2012.

    Google Scholar 

  57. R. A. Wilson, “Standard generators for sporadic simple groups” J. Algebra 184 (1996), no. 2, 505–515.

    Google Scholar 

  58. J. Wolfart “ABC for polynomials, dessins d’enfants and uniformization — a survey” Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main, 20, Franz Steiner Verlag Stuttgart, Stuttgart, 313–345 (2006) http://www.math.uni-rankfurt.de/~wolfart/.

Download references

Acknowledgments

The author wishes to express his deepest gratitude to the organisers of the 2014 installment of the conferences on Symmetries in Graphs, Maps, and Polytopes hosted by The Open University and in particular to Professor Jozef Širáň for making this publication possible. The author wishes to thank the anonymous referees for their lengthy and in-depth commentary they provided on this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Fairbairn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fairbairn, B. (2016). More on Strongly Real Beauville Groups. In: Širáň, J., Jajcay, R. (eds) Symmetries in Graphs, Maps, and Polytopes. SIGMAP 2014. Springer Proceedings in Mathematics & Statistics, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-30451-9_6

Download citation

Publish with us

Policies and ethics