Skip to main content

Groups of Order at Most 6,000 Generated by Two Elements, One of Which Is an Involution, and Related Structures

  • Conference paper
  • First Online:
Symmetries in Graphs, Maps, and Polytopes (SIGMAP 2014)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 159))

Included in the following conference series:

Abstract

A (2,*)-group is a group that can be generated by two elements, one of which is an involution. We describe the method we have used to produce a census of all (2,*)-groups of order at most 6,000. Various well-known combinatorial structures are closely related to (2,*)-groups and we also obtain censuses of these as a corollary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Berčič, Konstrukcije in katalogizacije simetričnih grafov, Ph.D. thesis, University of Ljubljana, 2015.

    Google Scholar 

  2. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I: The user language, J. Symbolic Comput. 24 (1997), 235–265.

    Google Scholar 

  3. M. Conder, Rotary maps on closed surfaces with up to 1000 edges, http://www.math.auckland.ac.nz/~conder/, accessed April 2015.

  4. M. Conder, S. Wilson, Inner reflectors and non-orientable regular maps, Discrete Math. 307 (2007), 367–372.

    Google Scholar 

  5. J. H. Conway, H. Dietrich, E. A. O’Brien, Counting Groups: Gnus, Moas, and other Exotica, Math. Intelligencer 30 (2008), 6–15.

    Google Scholar 

  6. D. Firth, An algorithm to find normal subgroups of a finitely presented group, up to a given finite index, Ph.D. thesis, University of Warwick, 2005.

    Google Scholar 

  7. D. F. Holt, B. Eick, E. O’Brien, Handbook of computational Group Theory, Discrete Mathematics and its applications, CRC Press (2005).

    Google Scholar 

  8. G. A. Jones, D. Singerman, Theory of maps on orientable surfaces, Proc. London Math. Soc. 37 (1978), 273–307.

    Google Scholar 

  9. G. A. Jones, D. Singerman, Maps, hypermaps and triangle groups. The Grothendieck theory of dessins d’enfants (Luminy, 1993), London Math. Soc. Lecture Note Ser. 200, Cambridge Univ. Press, Cambridge (1994), 115–145.

    Google Scholar 

  10. A. Lubotzky, Enumerating Boundedly Generated Finite Groups, J. Algebra 238 (2001), 194–199.

    Google Scholar 

  11. A. Lubotzky, D. Segal, Subgroup growth, Progress in Mathematics 212, Birkhäuser Verlag, 2003.

    Google Scholar 

  12. T. W. Müller, J. -C. Schlage-Puchta, Normal growth of large groups, II, Arch. Math. 84 (2005), 289–291.

    Google Scholar 

  13. P. Potočnik, P. Spiga, G. Verret, Cubic vertex-transitive graphs on up to \(1280\) vertices, J. Symbolic Comput. 50 (2013), 465–477.

    Google Scholar 

  14. P. Potočnik, P. Spiga, G. Verret, A census of \(4\)-valent half-arc-transitive graphs and arc-transitive digraphs of valence two, Ars Math. Contemporanea 8 (2015), 133–148.

    Google Scholar 

  15. P. Potočnik, P. Spiga, G. Verret, Asymptotic enumeration of vertex-transitive graphs of fixed valency, http://arxiv.org/abs/1210.5736arXiv:1210.5736 [math.CO].

  16. P. Potočnik, P. Spiga, G. Verret, Primož Potočnik’s home page, http://www.fmf.uni-lj.si/~otocnik/work.htm, accessed April 2015.

  17. J.-P. Serre, Trees, Springer-Verlag Berlin Heidelberg 1980.

    Google Scholar 

  18. J. Širáň, Regular Maps on a Given Surface: A Survey, Topics in Discrete Mathematics Algorithms and Combinatorics 26 (2006), 591–609.

    Google Scholar 

  19. W. A. Stein et al., Sage Mathematics Software (Version 6.4.1), The Sage Development Team (2015) http://www.sagemath.org.

  20. The GAP Group, GAP—Groups, Algorithms, and Programming, Lehrstuhl D für Mathematik, RWTH Aachen and School of Mathematical and Computational Sciences, University of St Andrews (2000), http://www.gap-system.orgwww.gap-system.org.

  21. J. Tits, Sur le groupe des automorphismes d’un arbre, Essays on topology and related topics, Springer New York, 1970, 188–211.

    Google Scholar 

  22. S. E. Wilson, New Techniques For the Construction of Regular Maps, PhD Dissertation, University of Washington (1976).

    Google Scholar 

  23. S. E. Wilson, Non-orientable regular maps, Ars Combin. 5 (1978), 213–218.

    Google Scholar 

Download references

Acknowledgments

The first author is supported by the Slovenian Research Agency (research projects P1-0294, J1-5433 and J1-6720). The third author is supported by The University of Western Australia as part of the Australian Research Council grant DE130101001. We would like to thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primož Potočnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Potočnik, P., Spiga, P., Verret, G. (2016). Groups of Order at Most 6,000 Generated by Two Elements, One of Which Is an Involution, and Related Structures. In: Širáň, J., Jajcay, R. (eds) Symmetries in Graphs, Maps, and Polytopes. SIGMAP 2014. Springer Proceedings in Mathematics & Statistics, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-319-30451-9_14

Download citation

Publish with us

Policies and ethics