Skip to main content

Abstract

BACOLI is a numerical software package that solves systems of parabolic partial differential equations (PDEs ) in one spatial dimension. It is based on high-order B-spline collocation and features adaptivity in space and time. The monodomain model of cardiac electrophysiology is a multi-scale model that couples electrical activity in myocardial tissue at the tissue scale with that at the cellular scale. This leads to a (parabolic ) reaction-diffusion PDE coupled with a set of nonlinear (non-parabolic) PDEs that do not involve spatial derivatives. In this paper, we extend BACOLI to solve this more general class of problem, of which the monodomain model is one example. We demonstrate that the extended BACOLI software package outperforms the Chaste software package, which is a powerful, widely used, and well-respected software package for heart simulation, in terms of execution time on the monodomain equation with two cell models of varying stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsenault, T., Muir, P.H., Smith, T.: Superconvergent interpolants for efficient spatial error estimation in 1D PDE collocation solvers. Can. Appl. Math. Q. 17 (3), 409–431 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Arsenault, T., Smith, T., Muir, P.H., Pew, J.: Asymptotically correct interpolation-based spatial error estimation for 1D PDE solvers. Can. Appl. Math. Q. 20 (3), 307–328 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Auckland Bioengineering Institute.: The CellML project. http://www.cellml.org/

  4. Bondarenko, V.E., Szigeti, G.P., Bett, G.C.L., Kim, S.J., Rasmusson, R.L.: Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol.-Heart C. 287 (3), H1378–H1403 (2004)

    Article  Google Scholar 

  5. de Boor, C.: A Practical Guide to Splines. Springer, New York (1978)

    Book  MATH  Google Scholar 

  6. de Boor, C., The MathWorks Inc.: Spline Toolbox User’s Guide. The MathWorks, Inc., Natick (1999)

    Google Scholar 

  7. Dodgson, N.: B-splines. http://www.cl.cam.ac.uk/teaching/2000/AGraphHCI/SMEG/node4.html (Aug 2013)

  8. Engineers Edge LLC.: Control volume – fluid flow. http://www.engineersedge.com/fluid_flow/control_volume.htm (Feb 2014)

  9. Holder, D., Huo, L., Martin, C.F.: The Control of Error in Numerical Methods. Springer, New York (2007)

    Book  MATH  Google Scholar 

  10. Luo, C., Rudy, Y.: A model of ventricular cardiac action potential. Circ. Res. 68 (6), 1501–1526 (1991)

    Article  Google Scholar 

  11. Marsh, M.E., Torabi Ziaratgahi, S., Spiteri, R.J.: The secrets to the success of the Rush – Larsen method and its generalizations. IEEE Trans. Bio-Med. Eng. 59 (9), 2506–2515 (2012)

    Article  Google Scholar 

  12. Mirshekari, E.: Extending BACOLI to solve multi-scale problems. Master’s thesis, Department of Mathematics and Statistics, University of Saskatchewan (2014)

    Google Scholar 

  13. Petzold, L.R.: A description of DASSL: a differential/algebraic system solver. Technical report, Sandia National Labs., Livermore (1982)

    Google Scholar 

  14. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291 (3), 1088–1100 (2006)

    Article  Google Scholar 

  16. The CellML Project.: A model of the ventricular cardiac action potential. http://models.cellml.org/exposure/2d2ce7737b42a4f72d6bf8b67f6eb5a2/luo_rudy_1991.cellml/@@cellml_codegen/F77 (Feb 2014)

  17. The CellML Project: Alternans and spiral breakup in a human ventricular tissue model (epicardial model). http://models.cellml.org/exposure/a7179d94365ff0c9c0e6eb7c6a787d3d/ten_tusscher_model_2006_IK1Ko_epi_units.cellml/@@cellml_codegen/F77 (Apr 2014)

  18. Wang, R., Keast, P., Muir, P.H.: A high-order global spatially adaptive collocation method for 1-D parabolic PDEs. Appl. Numer. Math. 50 (2), 239–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Whiteley, J.P.: An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Bio-Med. Eng. 53 (11), 2139–2147 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Spiteri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mirshekari, E., Spiteri, R.J. (2016). Extending BACOLI to Solve the Monodomain Model. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30379-6_41

Download citation

Publish with us

Policies and ethics