Skip to main content

Asymptotic Rate for Weak Convergence of the Distribution of Renewal-Reward Process with a Generalized Reflecting Barrier

  • Conference paper
  • First Online:
Intelligent Mathematics II: Applied Mathematics and Approximation Theory

Abstract

In this study, a renewal-reward process (X(t)) with a generalized reflecting barrier is constructed mathematically and under some weak conditions, the ergodicity of the process is proved. The explicit form of the ergodic distribution is found and after standardization, it is shown that the ergodic distribution converges to the limit distribution R(x), when \(\lambda \rightarrow \infty \), i.e.,

$$\begin{aligned} Q_{X}(\lambda x)\equiv & {} \lim _{t\rightarrow \infty }P\{X(t)\le \lambda x\}\rightarrow R(x) \\\equiv & {} \frac{2}{m_{2}}\int \limits _{0}^{x}\int \limits _{v}^{\infty }{ [1-F(u)]du}dv. \end{aligned}$$

Here, F(x) is the distribution function of the initial random variables \( \{\eta _{n}\},\) \(n=1,2,\ldots ,\) which express the amount of rewards and \( m_{2}\equiv E(\eta _{1}^{2})\). Finally, to evaluate asymptotic rate of the weak convergence, the following inequality is obtained:

$$\begin{aligned} |Q_{X}(\lambda x)-R(x)|\le \frac{2}{\lambda }|\pi _{0}(x)-R(x)|. \nonumber \end{aligned}$$

Here,

$$\begin{aligned} \pi _{0}(x)=(\frac{1}{m_{1}})\int \limits _{0}^{x}(1-F(u))du \end{aligned}$$

is the limit distribution of residual waiting time generated by \(\{\eta _{n}\},\) \(n=1,2,\ldots ,\) and \(m_{1}=E(\eta _{1})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aliyev, R., Khaniyev, T., Kesemen, T.: Asymptotic expansions for the moments of a semi-Markovian random walk with gamma distributed interference of chance. Commun. Statis. Theory Meth. 39(1), 130–143 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aliyev, R.T., Kucuk, Z., Khaniyev, T.: A three-term asymptotic expansions for the moments of the random walk with triangular distributed interference of chance. Appl. Math. Modell. 34(11), 3599–3607 (2010)

    Google Scholar 

  3. Borovkov, A.A.: Stochastic Processes in Queuing Theory. Spinger, New York (1976)

    Book  MATH  Google Scholar 

  4. Brown, M., Solomon, H.: A second—order approximation for the variance of a renewal-reward process. Stochas. Process.Appl. 34(11), 3599–3607 (2010)

    MathSciNet  Google Scholar 

  5. Feller, W.: Introduction to Probability Theory and Its Applications II. Wiley, New York (1971)

    MATH  Google Scholar 

  6. Gever, B.: Genelleştirilmiş Yansıtan Bariyerli Öd üllü Yenileme Sürecinin Asimtotik Yöntemlerle İ ncelenmesi, Yüksek Lisans Tezi, TOBB ETÜ, Ankara (in Turkish)

    Google Scholar 

  7. Gihman, I.I., Skorohod, A.V.: Theory of Stochastic Processes II. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  8. Janssen, A.J.E.M., Leeuwaarden, J.S.H.: On Lerch’s transcendent and the Gaussian random walk. Annals Appl. Prob. 17(2), 421–439 (2007)

    Article  MATH  Google Scholar 

  9. Kastenbaum, M.A.: A dialysis system with one absorbing and one semi-reflecting state. J. Appl. Probab. 3, 363–371 (1996)

    MathSciNet  Google Scholar 

  10. Khaniyev, T., Gever, B., Mammadova, Z.: Approximation formulas for the ergodic moments of Gaussian random walk with a reflecting barrier. Advances in Applied Mathematics and Approximation Theory: Contributions from AMAT. Springer Proceedings in Mathematics and Statistics, vol. 13, pp. 219–233 (2012)

    Google Scholar 

  11. Khaniev, T.A., Unver, I., Maden, S.: On the semi-Markovian random walk with two reflecting barriers. Stochas. Anal. Appl. 19(5), 799–819 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khaniyev, T.A., Mammadova, Z.: On the stationary characteristics of the extended model of type \((s, S)\) with Gaussian distribution of summands. J. Statis. Comput. Simul. 76(10), 861–874 (2006)

    Google Scholar 

  13. Khaniev, T., Atalay, K.: On the weak convergence of the ergodic distribution in an inventory model of type \((s, S),\). Hacettepe J. Math. Statis. 39(4), 599–611 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Khaniyev, T., Kokangul, A., Aliyev, R.: An asymptotic approach for a semi-Markovian inventory model of type \((s, S)\). Appl. Stochas. Models Bus. Indus. 29, 439–453 (2013)

    MathSciNet  Google Scholar 

  15. Lotov, V.I.: On some boundary crossing problems for Gaussian random walks. Annals Prob. 24(4), 2154–2171 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nasirova, T.I.: Processes of the semi—Markovian Random Walks. Elm, Baku (1984)

    MATH  Google Scholar 

  17. Patch, B., Nazarathy, Y., Taimre, T.: A correction term for the covariance of multivariate renewal-reward processes. Statis. Prob. Lett. 102, 1–7 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rogozin, B.A.: On the distribution of the first jump. Theory Prob. Appl. 9(3), 450–465 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Weesakul, B.: The random walk between a reflecting and an absorbing barrier. Annals Math. Statis. 32, 765–773 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zang, Y.L.: Some problems on a one dimensional correlated random walk with various types of barrier. J. Appl. Prob. 29, 196–201 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Khaniyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Khaniyev, T., Gever, B., Hanalioglu, Z. (2016). Asymptotic Rate for Weak Convergence of the Distribution of Renewal-Reward Process with a Generalized Reflecting Barrier. In: Anastassiou, G., Duman, O. (eds) Intelligent Mathematics II: Applied Mathematics and Approximation Theory. Advances in Intelligent Systems and Computing, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-319-30322-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30322-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30320-8

  • Online ISBN: 978-3-319-30322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics