Skip to main content

Physicochemical Properties of Lipids and Macromolecules in Higher Level Organization

  • Chapter
  • First Online:
Membrane Protein – Lipid Interactions: Physics and Chemistry in the Bilayer

Abstract

This chapter relates in a very concise way, how the physicochemical properties of membrane lipids determine the formation of self-segregated structures. The most common model methods used to understand the influence of lipid organization in membranes, lipid monolayers, liposomes and supported lipid bilayers, are reviewed as well for their suitability in the investigation of lipid-membrane protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagatolli LA, Parasassi T, Gratton E. Giant phospholipid vesicles: comparison among the whole lipid sample characteristics using different preparation methods—a two photon fluorescence microscopy study. Chem Phys Lipids. 2000;105:135–47.

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Weissmann G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol. 1965;13:253–9.

    Article  CAS  PubMed  Google Scholar 

  • Binnig G, Rohrer H, Gerber C, Weibel E. Surface studies by scanning tunneling microscopy. Phys Rev Lett. 1982;49:57–61.

    Article  Google Scholar 

  • Blume A. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta—Biomembr. 1979;557(1):32–44.

    Article  CAS  Google Scholar 

  • Davies JTRE. Interfacial Phenomena. 1st ed. New York: Academic Press Inc.; 1963.

    Google Scholar 

  • Domènech Ó́, Ignés-Mullol J, Teresa Montero M, Hernandez-Borrell J. Unveiling a complex phase transition in monolayers of a phospholipid from the annular region of transmembrane proteins. J Phys Chem B. 2007a;111(37):10946–51.

    Google Scholar 

  • Domènech Ò, Morros A, Cabañas ME, Teresa Montero M, Hernández-Borrell J. Supported planar bilayers from hexagonal phases. Biochim Biophys Acta—Biomembr. 2007b;1768(1):100–6.

    Google Scholar 

  • Domènech Ò, Redondo L, Picas L, Morros A, Montero MT, Hernández-Borrell J. Atomic force microscopy characterization of supported planar bilayers that mimic the mitochondrial inner membrane. J Mol Recognit. 2007c;546–53.

    Google Scholar 

  • Gaillard S, Renou JP, Bonnet M, Vignon X, Dufourc EJ. Halothane-Induced Membrane Reorganization Monitored by Dsc, Freeze-Fracture Electron-Microscopy and P-31-Nmr Techniques. Eur Biophys J. 1991;265–74.

    Google Scholar 

  • Garcia-Manyes S, Redondo-Morata L, Oncins G, Sanz F. Nanomechanics of lipid bilayers: Heads or tails? J Am Chem Soc. 2010;132(14):12874–86.

    Article  CAS  PubMed  Google Scholar 

  • Gennis RB. Biomembranes : molecular structure and function. Barcelona [etc.] : Springer; 1989.

    Google Scholar 

  • Groves JT, Boxer SG. Micropattern formation in supported lipid membranes. Acc Chem Res. 2002;35:149–57.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Borrell J, Keough KM. Heteroacid phosphatidylcholines with different amounts of unsaturation respond differently to cholesterol. Biochim Biophys Acta. 1993;1153(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  • Herreros B, Metz AW, Harbison GS. Moment analysis as a systematic tool for NMR powder pattern analysis. Solid State Nucl Magn Reson. 2000;16:141–50.

    Article  CAS  PubMed  Google Scholar 

  • Hoenig D, Moebius D. Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J Phys Chem [Internet]. 1991;95:4590–2. Available from: http://pubs.acs.org/doi/abs/10.1021/j100165a003.

    Google Scholar 

  • Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans. 1976; 2:1525.

    Google Scholar 

  • Léonard A, Dufourc EJ. Interactions of cholesterol with the membrane lipid matrix. A solid state NMR approach. Biochimie. 1991;73:1295–302.

    PubMed  Google Scholar 

  • Maget-Dana R. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. Biochim Biophys. Acta—Biomembr. 1999.

    Google Scholar 

  • Nag K, Keough KM. Epifluorescence microscopic studies of monolayers containing mixtures of dioleoyl- and dipalmitoylphosphatidylcholines. Biophys J. 1993;65(3):1019–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oncins G, Oncins G, Picas L, Picas L, Hernandez-Borrell J, Hernandez-Borrell J, et al. Thermal response of Langmuir-Blodgett films of dipalmitoylphosphatidylcholine studied by atomic force microscopy and force spectroscopy. Biophys J. 2007;93:2713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Gil J. Structure of pulmonary surfactant membranes and films: The role of proteins and lipid-protein interactions. Biochim. Biophys. Acta—Biomembr. 2008;1778:1676–95.

    Article  Google Scholar 

  • Peters R, Beck K. Translational diffusion in phospholipid monolayers measured by fluorescence microphotolysis. Proc Natl Acad Sci. 1983;80(23):7183–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petty MCM. Langmuir-Blodgett films: an introduction. Cambridge: Cambridge Univ Press; 1996.

    Book  Google Scholar 

  • Picas L, Milhiet PE, Hernández-Borrell J. Atomic force microscopy: a versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale. Chem Phys Lipids. 2012;845–60.

    Google Scholar 

  • Richter RP, Him JLK, Brisson A. Supported lipid membranes. Mater Today. 2003; 32–7.

    Google Scholar 

  • Rinia HA, Demel RA, van der Eerden JP, de Kruijff B. Blistering of langmuir-blodgett bilayers containing anionic phospholipids as observed by atomic force microscopy. Biophys J. 1999;77:1683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schurch S, Lee M, Gehr P. Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant. Pure Appl Chem. 1992;1745–50.

    Google Scholar 

  • Seeger HM, Marino G, Alessandrinia, Facci P. Effect of physical parameters on the main phase transition of supported lipid bilayers. Biophys J Biophys Soc. 2009;97(4):1067–76.

    Google Scholar 

  • Simonsen AC, Bagatolli LA. Structure of spin-coated lipid films and domain formation in supported membranes formed by hydration. Langmuir. 2004;20:9720–8.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Sackmann E. Polymer-supported membranes as models of the cell surface. Nature. 2005;437:656–63.

    Article  CAS  PubMed  Google Scholar 

  • Verger R, Mieras MCE, De Haas GH. Action of phospholipase A at interfaces. J Biol Chem. 1973;248:4023–34.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi H. Borrell .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Borrell, J.H., Domènech, Ò., Keough, K.M.W. (2016). Physicochemical Properties of Lipids and Macromolecules in Higher Level Organization. In: Membrane Protein – Lipid Interactions: Physics and Chemistry in the Bilayer. SpringerBriefs in Biochemistry and Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30277-5_2

Download citation

Publish with us

Policies and ethics