Skip to main content

Diving Autopilot Design for Underwater Vehicles Using an Adaptive Neuro-Fuzzy Sliding Mode Controller

  • Chapter
  • First Online:
Advances and Applications in Nonlinear Control Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 635))

Abstract

In general, the diving dynamics of an autonomous underwater vehicle (AUV) has been derived under various assumptions on the motion of the vehicle in vertical plane. Usually, pitch angle of AUV is assumed to be small in maneuvering, so that the nonlinear dynamics in the depth motion of the vehicle could be linearized. However, a small-pitch-angle is a somewhat strong restricting condition and may cause serious modeling inaccuracies of AUV’s dynamics. For this reason, many researchers concentrated their interests on the applications of adaptive control methodology to the motion control of underwater vehicle. In this chapter, we directly resolve the nonlinear equation of the AUV’s diving motion without any restricting assumption on the pitch angle in diving model. The proposed adaptive neuro-fuzzy sliding mode controller (ANFSMC) with a proportional + integral + derivative (PID) sliding surface is derived so that the actual depth position tracks the desired trajectory despite uncertainty, nonlinear dynamics and external disturbances. In the proposed control structure, the corrective term is approximated by a continuous fuzzy logic control and the equivalent control is determined by a feedforward neural network. The weights of the neural network are updated such that the corrective control term of the ANFSMC goes to zero. The adaptive laws are employed to adjust the output scaling factor and to compute PID sliding surface coefficients. Finally, the lyapunov theory is employed to prove the stability of the ANFSMC for trajectory tracking of diving behaviors. Simulation results show that this control strategy can attain excellent control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akkizidis S, Roberts GN, Ridao P, Batlle J (2003) Designing a Fuzzy-like PD controller for an underwater robot. Control Eng Pract 11(4):471–480

    Article  Google Scholar 

  2. Antonelli G, Chiaverini S, Sarkar N, West M (2001) Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans Control Syst Technol 9(5):756–765

    Article  Google Scholar 

  3. Antonelli G, Chiaverini S (2003) A fuzzy approach to redundancy resolution for underwater vehicle-manipulator systems. Control Eng Pract 11(4):445–452

    Article  Google Scholar 

  4. Antonelli G, Caccavale F, Chiaverini S, Fusco G (2003) A novel adaptive control law for underwater vehicles. IEEE Trans Control Syst Technol 11(2):221–232

    Article  Google Scholar 

  5. Bagheri A, Karimi T, Amanifard N (2010) Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers. Appl Soft Comput 10(3):908–918

    Article  Google Scholar 

  6. Balasuriya A, Cong L (2003) Adaptive fuzzy sliding mode controller for underwater vehicles. In: Proceeding of international conference on control and automation, 12 June 2003, Montreal, Quebec, Canada, pp 917–921. doi:10.1109/ICCA.2003.1595156

  7. Bessa WM, Dutra MS, Kreuzer E (2008) Depth control of remotely operated underwater vehicles using an adaptive fuzzy sliding mode controller. J Robot Auton Syst 56(8):670–677

    Article  Google Scholar 

  8. Bessa WM, Dutra MS, Kreuzer E (2010) An adaptive fuzzy sliding mode controller for remotely operated underwater vehicles. Robot Auton Syst 58(1):16–26

    Article  Google Scholar 

  9. Choi SK, Yuh J (1996) Experimental study on a learning control system with bound estimation for underwater vehicles. Int J Auton Robots 3(2):187–194

    Article  Google Scholar 

  10. Chu ZZ, Zhang MJ (2014) Fault reconstruction of thruster for autonomous underwater vehicle based on terminal sliding mode observer. J Ocean Eng 88:426–434

    Article  Google Scholar 

  11. Cristi R, Papoulias FA, Healey AJ (1990) Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J Ocean Eng 15(3):152–160

    Article  Google Scholar 

  12. Da Cunha JPVS, Costa RR, Hsu L (1995) Design of high performance variable structure control of ROV’s. IEEE J Ocean Eng 20(1):42–55

    Article  Google Scholar 

  13. DeBitetto PA (1994) Fuzzy logic for depth control of unmanned undersea vehicles. In: Proceedings of IEE of AUV symposium, 19–20 July 1994, Cambridge, pp 233–241. doi:10.1109/AUV.1994.518630

  14. DeBitetto PA, (1995) Fuzzy logic for depth control of Unmanned Undersea Vehicles. In:IEEE J Ocean Eng 20(3):242–248

    Google Scholar 

  15. Doyle JC, Stein G (1981) Multivariable feedback design concepts for a classical/modern synthesis. IEEE Trans Autom Control 26(1):4–16

    Article  MATH  Google Scholar 

  16. Fossen T (1994) Guidance and control of ocean vehicles. Wiley, New York

    Google Scholar 

  17. Fossen TI, Sagatun S (1991) Adaptive control of nonlinear systems: a case study of underwater robotic systems. J Robot Syst 8(3):393–412

    Article  MATH  Google Scholar 

  18. Goheen KR, Jefferys ER (1990) Multivariable self tuning autopilots for autonomous underwater vehicles. IEEE J Ocean Eng 15(3):144–151

    Article  Google Scholar 

  19. Guo J, Chiu FC, Huang CC (2003) Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. J Ocean Eng 30(16):2137–2155

    Article  Google Scholar 

  20. Guo S, Du J, Lin X, Yue C (2012) An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Int Conf Mech Autom 3:1681–1685

    Google Scholar 

  21. Healey AJ, Lienard D (1993) Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J Ocean Eng 18(3):327–339

    Article  Google Scholar 

  22. Herman P (2009) Decoupled PD set-point controller for underwater vehicles. Control Eng Pract 36(6–7):529–534

    Google Scholar 

  23. Hoang NQ, Kreuzer E (2007) Adaptive PD-controller for positioning of a remotely operated vehicle close to an underwater structure: theory and experiments. Control Eng Pract 15(4):411–419

    Article  Google Scholar 

  24. Hoang NQ, Kreuzer E (2008) A robust adaptive sliding mode controller for remotely operated vehicles. Tech Mech 28(3):185–193

    Google Scholar 

  25. Ishaque K, Abdullah SS, Ayob SM, Salam Z (2010) Single input fuzzy logic controller for unmanned underwater vehicle. J Intell Robot Syst 59(1):87–100

    Article  MATH  Google Scholar 

  26. Ishaque K, Abdullah SS, Ayob SM, Salam Z (2011) A simplified approach to design fuzzy logic controller for an underwater vehicle. Ocean Eng 38(1):271–284

    Google Scholar 

  27. Ishii K, Fujii T, Ura T (1995) An on-line adaptation method in a neural network based control system for AUVs. IEEE J Ocean Eng 20(3):221–228

    Article  Google Scholar 

  28. Ishii K, Fujii T, Ura T (1998) Neural network system for online controller adaptation and its application to underwater robot. Proc IEEE Int Conf Robot Autom 1:756–761

    Article  Google Scholar 

  29. Ishii K, Ura T (2000) An adaptive neural-net controller system for an underwater vehicle. Control Eng Pract 8(2):177–184

    Article  Google Scholar 

  30. Jagannathan S, Galan G (2003) One-layer neural-network controller with preprocessed inputs for autonomous underwater vehicles. IEEE Trans Veh Technol 52(5):1342–1355

    Article  Google Scholar 

  31. Jalving B (1994) The NDRE-AUV flight control system. IEEE J Ocean Eng 19(4):497–501

    Article  Google Scholar 

  32. Javadi-Moghaddam J, Bagheri A (2010) An adaptive neuro-fuzzy sliding mode based genetic algorithm control system for under water remotely operated vehicle. Expert Syst Appl 37:647–660

    Article  Google Scholar 

  33. Jimenez TS, Jouvencel B (2003) Using a Higher order sliding modes for diving control a torpedo autonomous underwater vehicle. In MTS/IEEE OCEANS:03 conference, vol 2, pp 56–62

    Google Scholar 

  34. Kanakakis V, Valavanis KP, Tsourveloudis NC (2004) Fuzzy logic based navigation of underwater vehicles. J Intell Robot Syst 40(1):45–88

    Article  Google Scholar 

  35. Kato N, Ito Y, Kojjma J, Asakawa K, Shirasaki Y (1994) Guidance and control of autonomous underwater vehicle AQUA EXPLORER 1000 for inspection of underwater cables. In: International Symp. on unmanned untethered submersible technology, Brest, pp 195–211. 1994, doi:10.1109/OCEANS.1994.363845. Accessed 13-16 Sept

  36. Kato N, Yuh J (1995) Underwater robotic vehicles: Design and control. TSI Press, Albuquerque

    Google Scholar 

  37. Kim SW, Lee JJ (1995) Design of a fuzzy controller with fuzzy sliding surface. J Fuzzy Sets Syst 71(3):359–367

    Article  MathSciNet  Google Scholar 

  38. Kim HS, Shin YK (2005) Design of adaptive fuzzy sliding mode controller based on fuzzy basis function expansion for UFV depth control. Int J Control Autom Syst 3(2):217–224

    Google Scholar 

  39. Kim HS, Shin YK (2007) Expanded adaptive fuzzy sliding mode controller using expert knowledge and fuzzy basis function expansion for UFV depth control. J Ocean Eng 34:1080–1088

    Article  Google Scholar 

  40. Kim JH, Lee KR, Cho YC, Lee HH, Park HB (2000) Mixed H2/ H-infinity control with regional pole placements for underwater vehicle systems. In: Proceedings of the 2000 American control conference, pp 82–87

    Google Scholar 

  41. Kim TW, Yuh J (2001) A novel neuro-fuzzy controller for autonomous underwater vehicles. IEEE Int Conf Robotic Autom 3:2350–2355

    Google Scholar 

  42. Lam WC, Ura T (1996) Nonlinear controller with switched control law for tracking control of non-cruising AUV. In: AUV’ 96 symposium on autonomous underwater vehicle technology, vol 4, pp 75–85

    Google Scholar 

  43. Lakhekar GV, Waghmare LM (2014) Dynamic fuzzy sliding mode control of underwater vehicles. Springer book publication book chapter: advances and applications in sliding mode control systems (studies in computational intelligence, vol 576, p 280. ISBN 978-3-319-11172-8 (XIV, 628)

    Google Scholar 

  44. Li JH, Lee PM (2005) A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle. Robot Auton Syst 52(3):132–147

    Article  Google Scholar 

  45. Li JH, Lee PM (2005) Design of an adaptive nonlinear controller for depth control of an autonomous underwater vehicle. Ocean Eng 32(17):2165–2181

    Article  Google Scholar 

  46. Li JH, Lee PM, Hong SW, Lee SJ (2007) Stable nonlinear adaptive controller for an autonomous underwater vehicle using neural networks. Int J Syst Sci 38(4):327–337

    Article  MathSciNet  MATH  Google Scholar 

  47. Liceaga-Castro E, van der Molen GM, Grimble M (1994) Submarine H/sup Infinity/depth control wave disturbances. In: Proceedings of 1994 American control conference–ACC ’94, pp 121–127

    Google Scholar 

  48. Lee J, Roh M, Lee J, Lee D (2007) Clonal selection algorithms for 6-DOF PID control of autonomous underwater vehicles. Lect Notes Comput Sci 4628:182–190

    Article  Google Scholar 

  49. Lee PM, Hong SW, Lim YK, Lee CM, Jeon BH, Park JW (1999) Discrete-time quasi-sliding mode control of an autonomous underwater vehicle. IEEE J Ocean Eng 24(3):388–395

    Article  Google Scholar 

  50. Lee SK, Sohn KH, Byun SW, Kim JY (2009) Modeling and controller design of manta-type unmanned underwater test vehicle. J Mech Sci Technol 23:987–990

    Article  Google Scholar 

  51. Logan CL (1994) A comparison between h-infinity/mu-synthesis control and sliding-mode control for robust control of a small autonomous underwater vehicle, In: Proceedings of the 1994 symposium on autonomous underwater vehicle technology, AUV ’94. Accessed 19–20 July 399–416

    Google Scholar 

  52. Lorentz J, Yuh J (1996) A survey and experimental study of neural network AUV control. Proc Symp Auton Underw Veh Technol AUV ’96. 20(3):109–116

    Google Scholar 

  53. Narasimhan M, Singh SN (2006) Adaptive optimal control of an autonomous underwater vehicle in the dive plane using dorsal fins. Ocean Eng 33:404–416

    Article  Google Scholar 

  54. Petrich J, Stilwell DJ (2011) Robust control for an autonomous underwater vehicle that suppresses pitch and yaw coupling. Ocean Eng 38(1):197–204

    Article  Google Scholar 

  55. Riedel JS, Healey AJ (1998) Shallow water station keeping of AUVs using multi-sensor fusion for wave disturbance prediction and compensationIn: Proceedings of IEEE oceanic engineering society. OCEANS’98. Conference, pp 212–218

    Google Scholar 

  56. Riedel J, Healey A (1998) Model based predictive control of AUV’s for station keeping in a shallow water wave environment, In: Proc Int Adv Robot Prog. New Orleans, LA. 77–102

    Google Scholar 

  57. Ruth MJ, Humphreys DE (1990) A robust depth and speed control system for a low-speed undersea vehicle. Int Symp Auton Underw Veh Technol. AUV ’90. 51–58

    Google Scholar 

  58. Sebastian E, Sotelo MA (2007) Adaptive fuzzy sliding mode controller for the kinematic variables of an underwater vehicle. J Intell Robot Syst 49(2):189–215

    Article  Google Scholar 

  59. Silvestre C, Pascoal A (2004) Control of the INFANTE AUV using gain scheduled static output feedback. Control Eng Pract 12(12):1501–1509

    Article  Google Scholar 

  60. Silvestre C, Pascoal A (2007) Depth control of the INFANTE AUV using gain-scheduled reduced order output feedback. Control Eng Pract 15(7):883–895

    Article  Google Scholar 

  61. Smallwood DA, Whitcomb LL (2004) Model based dynamic positioning of underwater robotic vehicles: theory and experiments. IEEE J Ocean Eng 29(1):169–186

    Article  Google Scholar 

  62. Smith SM, Rae GJS, Anderson DT, Shien AM (1994) Fuzzy logic control of an autonomous underwater vehicle. Control Eng Pract 2(2):321–331

    Article  Google Scholar 

  63. Song F. Smith SM (2000) Design of sliding mode fuzzy controllers for an autonomous underwater vehicle without system model. In: Proceeding of MTS/IEEE ocean conference, Providence, pp 835–840. 2000, doi:10.1109/OCEANS.2000.881362. Accessed 14 Sept

  64. Soylu S, Buckham BJ, Podhorodeski RP (2009) MIMO sliding-mode and H-Infinity controller design for dynamic coupling reduction in underwater-manipulator systems. Trans Can Soc Mech Eng 33(4):731–743

    Google Scholar 

  65. Stein G, Athans M (1987) The LQG-LTR procedure for multivariable feedback control design. IEEE Trans Autom Control 32:105–114

    Article  MATH  Google Scholar 

  66. Triantafyllou MS, Grosenbaugh MA (1991) Robust control for underwater vehicle systems with time delays. IEEE J Ocean Eng 16(1):146–151

    Article  Google Scholar 

  67. Venugopal KP, Sudhakar R, Pandya AS (1992) On-line learning control of autonomous underwater vehicles using feedforward neural networks. IEEE J Ocean Eng 17(4):308–319

    Article  Google Scholar 

  68. Walchko KJ, Nechyba MC (2003) Development of a sliding mode control system with extended Kalman filter estimation for Subjugator. In: Proceeding of Florida conference on recent advances in robotics, Florida, pp 185–191. Accessed 18–20 June 2003

    Google Scholar 

  69. Wang JS, Lee CSG, Yuh J (2000) Self-adaptive neuro-fuzzy systems with fast parameter learning for autonomous underwater vehicle control. In: Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation, pp 110–116

    Google Scholar 

  70. Wang JS, Lee CSG (2003) Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle. IEEE Trans Robot Autom 19(2):283–295

    Article  Google Scholar 

  71. Yoerger DR, Slotine JJE (1991) Adaptive sliding control of an experimental underwater vehicle. Proc IEEE Conf Robot Autom 5:2746–2751

    Google Scholar 

  72. Yoerger D, Slotine J (1985) Robust trajectory control of underwater vehicles. IEEE J Ocean Eng 10(4):462–470

    Article  Google Scholar 

  73. Yuh J (1990) A neural net controller for underwater robotic vehicles. IEEE J Ocean Eng 15(3):161–166

    Article  Google Scholar 

  74. Yuh J (1990) Modeling and control of underwater robotic vehicles. IEEE Trans Syst Man Cybern 20:1475–1483

    Article  Google Scholar 

  75. Yuh J, Lakshmi R (1993) An intelligent control system for remotely operated vehicles. IEEE J Ocean Eng 18(1):55–62

    Article  Google Scholar 

  76. Yuh J (1994) Learning control for underwater robotic vehicles. IEEE Control Syst 14(2):39–46

    Article  Google Scholar 

  77. Yuh J (1995) Underwater Robotic Vehicles: Design and Control. TSI Press

    Google Scholar 

  78. Yuh J, Nie J (2000) Application of Nonregressor-based adaptive control to underwater robots: experiment. Int J Comput Electron Eng 26:169–179

    Article  Google Scholar 

  79. Zhao S, Yuh J (2005) Experimental study on advanced underwater robot control. IEEE Trans Robot 21(4):695–703

    Article  Google Scholar 

  80. Zhang LJ, Qi X, Pang YJ (2009) Adaptive output feedback control based on DRFNN for AUV. Ocean Eng 36(9):716–722

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Lakhekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lakhekar, G.V., Waghmare, L.M., Vaidyanathan, S. (2016). Diving Autopilot Design for Underwater Vehicles Using an Adaptive Neuro-Fuzzy Sliding Mode Controller. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Nonlinear Control Systems. Studies in Computational Intelligence, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-319-30169-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30169-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30167-9

  • Online ISBN: 978-3-319-30169-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics