Skip to main content

Benign Chlorine-Free Approaches to Organophosphorus Compounds

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

Organophosphorus compounds have widespread use throughout the world, as agricultural chemicals, medicinal agents, flame retardants, plasticizing and stabilizing agents, selective extractants for metal salts from ores, additives for petroleum products and corrosion inhibitors. Moreover, they are also endowed with metal binding properties, for this reason they have a paramount role in catalysis, being able to direct the activity and selectivity of a metal. Currently, organophosphorus compounds are produced on industrial scale using white phosphorus and chlorine, through an environmentally harmful process which generates equimolar amount of chlorinated waste. In the quest for alternative environmentally benign technology, several routes have been envisaged starting either from elemental phosphorus or from one of its direct low-valent derivative as hypophosphite.

In this contribution, we summarize the latest findings on “green” synthetic approaches towards organophosphorus derivatives. Reactions of elemental phosphorus with organic molecules by means of photochemical irradiation, through a radical mechanism, by electrophilic/nucleophilic addition, mediated by a transition metal or by electrochemical means, will be described. Moreover, a synthetic strategy that uses hypophosphorus acid and its alkali salts as phosphorylating agents towards organic molecules will be as well depicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corbridge DEC (2000) Phosphorus 2000. Elsevier, Amsterdam

    Google Scholar 

  2. (a) Official Journal of the European Union, L396, Regulation (EC) N. 1907/2006; (b) Peruzzini M (2003) White phosphorus and green chemistry: en route for an ecoefficiently catalysed oxidative phosphorylation. Spec Chem Mag 23:32–35

    Google Scholar 

  3. Ginsberg AP, Lindsell WE (1971) Rhodium complexes with the molecular unit P4 as a ligand. J Am Chem Soc 93:2082–2083

    Article  CAS  Google Scholar 

  4. (a) Caporali M, Gonsalvi L, Rossin A, Peruzzini M (2010) P4 Activation by late-transition metal complexes. Chem Rev 110:4178–4235; (b) Scheer M, Balázs G, Seitz A (2010) P4 Activation by main group elements and compounds. Chem Rev 110:4236–4256; (c) Cossairt BM, Piro NA, Cummins CC (2010) Early-transition-metal-mediated activation and transformation of white phosphorus. Chem Rev 110:4164–4177

    Google Scholar 

  5. (a) Peruzzini M, Ramirez JA, Vizza F (1998) Hydrogenation of white phosphorus to phosphane with rhodium and iridium trihydrides. Angew Chem Int Ed 37:2255–2257. (b) Barbaro P, Ienco A, Mealli C, Peruzzini M, Scherer OJ, Schmitt G, Vizza F, Wolmershäuser G (2003) Activation and functionalization of white phosphorus at rhodium: experimental and computational analysis of the [(triphos)Rh(η12-P4RR’)]Y complexes (triphos = MeC(CH2PPh2)3; R = H, alkyl, aryl; R′ = 2 electrons, H, Me) Chem Eur J 9:5195–5210 and references therein. (c) Fox AR, Wright RJ, Rivard E, Power PP (2005) Tl2[Aryl2P4]: A thallium complexed diaryltetraphosphabutadienediide and its two-electron oxidation to a diaryltetraphosphabicyclobutane, Aryl2P4. Angew Chem Int Ed 44:7729–7733

    Google Scholar 

  6. Dorfman YA, Aleshkova MM, Polimbetova GS, Levina LV, Petrova TV, Abdreimova RR, Doroshkevich DM (1993) New reactions involving the oxidative O-, N-, and C-phosphorylation of organic compounds by phosphorus and phosphides in the presence of metal complexes. Russ Chem Rev 62:877–896

    Article  Google Scholar 

  7. Armstrong KM, Kilian P (2011) Catalytic synthesis of triaryl phosphates from white phosphorus. Eur J Inorg Chem 2011:2138–2147

    Article  CAS  Google Scholar 

  8. Figueroa JS, Cummins CC (2006) A niobaziridine hydride system for white phosphorus or dinitrogen activation and N- or P-atom transfer. Dalton Trans 35:2161–2168

    Google Scholar 

  9. Cossairt BM, Cummins CC (2010) Shuttling P3 from niobium to rhodium: the synthesis and use of Ph3SnP3(C6H8) as a P3 synthon. Angew Chem Int Ed 49:1595–1598

    Article  CAS  Google Scholar 

  10. Weber L (1992) The chemistry of diphosphenes and their higher congeners: synthesis, structure, and reactivity. Chem Rev 92:1839–1906

    Article  CAS  Google Scholar 

  11. Velian A, Cummins CC (2012) Synthesis of a diniobium tetraphosphorus complex by a 2(3–1) process. Chem Sci 3:1003–1006

    Article  CAS  Google Scholar 

  12. Cossairt BM, Cummins CC (2008) A reactive niobium phosphinidene P8 cluster obtained by reductive coupling of white phosphorus. Angew Chem Int Ed 47:169–172

    Article  CAS  Google Scholar 

  13. Cossairt BM, Cummins CC (2008) A niobium-mediated cycle producing phosphorus-rich organic molecules from white phosphorus (P4) through activation, functionalization, and transfer reactions. Angew Chem Int Ed 47:8863–8866

    Article  CAS  Google Scholar 

  14. Huang W, Diaconescu P (2012) P4 activation by group 3 metal arene complexes. Chem Commun 48:2216–2218

    Article  CAS  Google Scholar 

  15. Scherer OJ, Werner B, Heckmann G, Wolmershauser G (1991) Bicyclic P6 as complex ligand. Angew Chem Int Ed 30:553

    Article  Google Scholar 

  16. (a) Stephens FH, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (2004); (b) Frey ASP, Cloke FGN, Hitchcock PB, Green JC (2011) P4 activation by U(η5-C5Me5)(η8C8H6(SiiPr3)2-1,4)(THF); the X-ray structure of [(U(η5-C5Me5)(η8C8H6(SiiPr3)2-1,4)]2(μ-η22-P4) New J Chem 35:2022–2026

    Google Scholar 

  17. Patel D, Tuna F, McInnes EJL, Lewis W, Blake AJ, Liddle ST (2013) An actinide Zintl cluster: A tris(triamidouranium)μ3222-heptaphosphanortricyclane and its diverse synthetic utility. Angew Chem Int Ed 52:13334–13337

    Article  CAS  Google Scholar 

  18. Turbervill RSP, Goicoechea JM (2014) From clusters to unorthodox pnictogen sources: solution-phase reactivity of [E7]3− (E = P-Sb) anions. Chem Rev 114:10807–10828 and references therein

    Google Scholar 

  19. Turbervill RSP, Jupp AR, McCullough SB, Ergöçmen D, Goicoechea JM (2013) Synthesis and characterization of free and coordinated 1,2,3-tripnictolide anions. Organometallics 32:2234–2244

    Article  CAS  Google Scholar 

  20. Deng S, Schwarzmaier C, Eichorn C, Scheer M (2008) Synthesis and unprecedented coordination behaviour of a novel 1,2,3-triphosphaferrocene complex. Chem Commun 44:4064–4066

    Google Scholar 

  21. Jupp AR, Goicoechea JM (2013) The 2-phosphaethynolate anion: a convenient synthesis and [2 + 2] cycloaddition chemistry. Angew Chem Int Ed 52:10064–10067

    Article  CAS  Google Scholar 

  22. Becker G, Schwarz W, Seidler N, Westerhausen M (1992) Z Anorg Allg Chem 612:72–82

    Article  CAS  Google Scholar 

  23. Puschmann FF, Stein D, Heift D, Hendriksen C, Gal ZA, Grützmacher H-F, Grützmacher H (2011) Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). Angew Chem Int Ed 50:8420–8423

    Article  CAS  Google Scholar 

  24. Krummenacher I, Cummins CC (2012) Carbon-phosphorus triple bond formation through multiple bond metathesis of an anionic phosphide with carbon dioxide. Polyhedron 32:10–13

    Article  CAS  Google Scholar 

  25. Tondreau AM, Benkő Z, Harmer JR, Grützmacher H (2014) Sodium phosphaethynolate, Na(OCP), as a “P” transfer reagent for the synthesis of N-heterocyclic carbene supported P3 and PAsP radicals. Chem Sci 5:1545–1554

    Article  CAS  Google Scholar 

  26. von Rathenau G (1937) Optische und photochemische versuche mit phosphor. Physica 4:503–514

    Article  CAS  Google Scholar 

  27. Tofan D, Cummins CC (2010) Photochemical incorporation of diphosphorus units into organic molecules. Angew Chem Int Ed 49:7516–7518

    Article  CAS  Google Scholar 

  28. Masuda JD, Schoeller WW, Donnadieu B, Bertrand G (2007) Carbene activation of P4 and subsequent derivatization. Angew Chem Int Ed 46:7052–7055

    Article  CAS  Google Scholar 

  29. Masuda JD, Schoeller WW, Donnadieu B, Bertrand G (2007) NHC-mediated aggregation of P4: isolation of a P12 cluster. J Am Chem Soc 129:14180–14181

    Article  CAS  Google Scholar 

  30. Scherer OJ, Berg G, Wolmershauser G (1996) P8 and P12 as complex ligands. Chem Ber 129:53–58

    Article  CAS  Google Scholar 

  31. Dielmann F, Sierka M, Virovets AV, Scheer M (2010) Access to extended polyphosphorus frameworks. Angew Chem Int Ed 49:6860–6864

    Article  CAS  Google Scholar 

  32. Back O, Kuchenbeiser G, Donnadieu B, Bertrand G (2009) Nonmetal-mediated fragmentation of P4: Isolation of P1 and P2 bis(carbene) adducts. Angew Chem Int Ed 48:5530–5533

    Article  CAS  Google Scholar 

  33. Hudnall TW, Bielawski CW (2009) An N, N’-diamidocarbene: studies in C-H insertion, reversible carbonylation, and transition-metal coordination chemistry. J Am Chem Soc 131:16039–16041

    Article  CAS  Google Scholar 

  34. Dorsey CL, Squires BM, Hudnall TW (2013) Isolation of a neutral P8 cluster by [2 + 2] cycloaddition of a diphosphene facilitated by carbene activation of white phosphorus. Angew Chem Int Ed 52:4462–4465

    Article  CAS  Google Scholar 

  35. Wiberg N, Wörner A, Karaghiosoff K, Fenske D (1997) Chem Ber 130:135–140

    Article  CAS  Google Scholar 

  36. Martin CD, Weinstein CM, Moore CE, Rheingold AL, Bertrand G (2013) Exploring the reactivity of white phosphorus with electrophilic carbenes: synthesis of a P4 cage and P8 cluster. Chem Commun 49:4486–4488

    Article  CAS  Google Scholar 

  37. (a) Trofimov BA, Arbuzova SN, Gusarova NK (1999) Phosphine in the synthesis of organophosphorus compounds. Russ Chem Rev 68:215–228; (b) Gusarova NK, Malysheva SF, Kuimov VA, Belogorlova NA, Mikhailenko VL, Trofimov BA (2008) Nucleophilic Addition of phosphine to 1-(tert-butyl)-4-vinylbenzene: a short-cut to bulky secondary and tertiary phosphines and their chalcogenides. Mendeleev Commun 18:260–261

    Google Scholar 

  38. Brandsma L, Arbuzova S, De Lang R, Gusarova N, Trofimov B (1997) A convenient synthesis of tertiary phosphines from red phosphorus and aryl- or heteroarylethenes. Phosphorus, Sulfur 126:125–128

    Article  CAS  Google Scholar 

  39. Brandsma L, van Doorn J, De Lang R, Gusarova N, Trofimov B (1995) Cleavage of P-P bonds in phosphorus. An efficient method for the preparation of primary alkylphosphines. Mendeleev Commun 5:14–15

    Article  Google Scholar 

  40. Rauhut MM, Hechenbleikner I, Currier HA, Schaefer FC, Wystrach VP (1959) The cyanoethylation of phosphine and phenylphosphine. J Am Chem Soc 81:1103

    Article  CAS  Google Scholar 

  41. King RB, Kapoor PN (1969) A new synthesis of politertiary phosphines and arsines. J Am Chem Soc 91:5191

    Article  CAS  Google Scholar 

  42. Rauhut MM, Currier HA, Semsel AM (1961) The free radical addition of phosphines to unsaturated compounds. J Org Chem 26:5138

    Article  CAS  Google Scholar 

  43. Rauhut MM, Semsel AM (1963) Reactions of elemental phosphorus with organometallic compounds. J Org Chem 28:471–472, ibidem, 473–477

    Google Scholar 

  44. Charrier C, Maigrot N, Ricard L, Le Floch P, Mathey F (1996) The reaction of white phosphorus with lithium (trimethylsilyl)diazomethanide: direct access to a new, aromatic 1,2,3,4-diazadiphosphole ring. Angew Chem Int Ed 35:2133–2134

    Article  CAS  Google Scholar 

  45. Riedel R, Hausen H-D, Fluck E (1985) Bis(2,4,6-tri-tert-butylphenyl)bicyclotetraphosphane. Angew Chem Int Ed 24:1056–1057

    Article  Google Scholar 

  46. Hübner A, Bernert T, Sanger I, Alig E, Bolte M, Fink L, Wagner M, Lerner HW (2010) Solvent-free mesityllithium: solid-state structure and its reactivity towards white phosphorus. Dalton Trans 39:7528–7533

    Article  CAS  Google Scholar 

  47. Chan WTK, Garcίa Hopkins AD, Martin LC, McPartlin M, Wright DS (2007) An unexpected pathway in the cage opening and aggregation of P4. Angew Chem Int Ed 46:3084–3086

    Article  CAS  Google Scholar 

  48. Holschumaker D, Bannenberg K, Ibrom K, Daniliuc CG, Jones PG, Tamm M (2010) Selective heterolytic P-P bond cleavage of white phosphorus by a frustrated carbene-borane Lewis pair. Dalton Trans 39:10590–10592

    Article  CAS  Google Scholar 

  49. Borger JE, Ehlers AW, Lutz M, Slootweg JC, Lammertsma K (2014) Functionalization of P4 using a Lewis acid stabilised bicyclo-[1.1.0]tetraphosphabutane anion. Angew Chem Int Ed 53:12836–12839

    Article  CAS  Google Scholar 

  50. (a) Barton DHR, Zhu J (1993) Elemental white phosphorus as a radical trap: a new and general route to phosphonic acids. J Am Chem Soc 115:2071–2072; (b) Barton DHR, Vonder Embse RA (1998) The Invention of Radical Reactions. Part 39. The reaction of white phosphorus with carbon-centered radicals. An improved procedure for the synthesis of phosphonic acids and further mechanistic insights. Tetrahedron 54:12475–12496

    Google Scholar 

  51. Sato A, Yorimitsu H, Oshima K (2006) Radical phosphination of organic halides and alkyl imidazole-1-carbothioates. J Am Chem Soc 128:4240–4241

    Article  CAS  Google Scholar 

  52. Bezombes JP, Hitchcock PB, Lappert MF, Nycz JE (2004) Synthesis and P-P cleavage reactions of [Co{P(X)X’}(CO)3] and P4[P(X)X’]2 X = N(SiMe3)2, X’ = NiPr2. Dalton Trans 2004:499–501

    Article  Google Scholar 

  53. Hincheley SL, Morrison CA, Rankin DWH, Macdonald CLB, Wiacek RJ, Cowley AH, Lappert MF, Gundersen G, Clyburne JAC, Power PP (2000) Persistent phosphinyl radicals from a bulky diphosphine: an example of a molecule jack-in-the-box. Chem Commun 20:2045–2046

    Article  Google Scholar 

  54. Giffin NA, Hendsbee AD, Roemmele TL, Lumsden MD, Pye CC, Masuda JD (2012) Preparation of a diphosphine with persistent phosphinyl radical character in solution: characterization, reactivity with O2, S8, Se, Te and P4 and electronic structure calculations. Inorg Chem 51:11837–11850

    Article  CAS  Google Scholar 

  55. Agapie T, Diaconescu PL, Mindiola DJ, Cummins CC (2002) Radical scission of symmetrical 1,4-dicarbonyl compounds: C-C bond cleavage with titanium(IV) enolate formation and related reactions. Organometallics 21:1329–1340

    Article  CAS  Google Scholar 

  56. Cossairt BM, Cummins CC (2010) Radical synthesis of trialkyl, triaryl, trisilyl and tristannyl phosphines from P4. New J Chem 34:1533–1536

    Article  CAS  Google Scholar 

  57. Heinl S, Reisinger S, Schwarzmeier C, Bodensteiner M, Scheer M (2014) Selective functionalization of P4 by metal-mediated C-P bond formation. Angew Chem Int Ed 53:7639–7642

    Article  CAS  Google Scholar 

  58. Scherer OJ, Hilt T, Wolmershäuser G (1998) P4 activation with [{Cp”’(OC)2Fe}2] (Cp”’ = C5H2 tBu3-1,2,4): exclusive formation of the exo/exo-butterfly complex [{Cp”’(OC)2Fe}2(μ-η 1 : η 1-P4)]. Organometallics 17:4110–4112

    Article  CAS  Google Scholar 

  59. (a) Budnikova YH, Yakhvarov DG, Sinyashin OG (2005) Electrocatalytic eco-efficient functionalization of white phosphorus. J Organomet Chem 690:2416–2425; (b) Milyukov VA, Budnikova YG, Sinyashin OG (2005) Organic chemistry of elemental phosphorus. Russ Chem Rev74:781–805; (c) Abdreimova R, Akbayeva D, Polimbetova G, Caminade A-M, Majoral J-P (2000) Chlorine free synthesis of organophosphorus compounds based on the functionalization of white phosphorus (P4). Phosphorus Sulfur Silicon 156:239–254

    Google Scholar 

  60. Yakhvarov DG, Gorbachuk EV, Sinyashin OG (2013) Electrode reactions of elemental (white) phosphorus and phosphane PH3. Eur J Inorg Chem 2013:4709–4726

    Article  CAS  Google Scholar 

  61. Yakhvarov DG, Caporali M, Gonsalvi L, Latypov S, Mirabello V, Rizvanov I, Sinyashin O, Stoppioni P, Peruzzini M, Schipper W (2011) First experimental evidence of phosphine oxide generation in solution and its trapping at Ruthenium. Angew Chem Int Ed 50:5370–5373

    Article  CAS  Google Scholar 

  62. Budnikova YH, Yakhvarov DG, Sinyashin OG (2003) Russian Patent. N. 2221805

    Google Scholar 

  63. Yakhvarov DG, Ganushevic YS, Sinyashin OG (2007) Direct formation of P-H and P-C bonds by reactions of organozinc reagents with white phosphorus. Mendeleev Commun 17:197–198

    Article  CAS  Google Scholar 

  64. Trofimov BA, Malysheva SF, Gusarova NK, Belogorlova NA, Kuimov VA, Sukhov BG, Tarasova NP, Smetannikov YV, Vilesov AS, Sine-govskaya LM, Arsent’ev KY, Likhoshvai EV (2009) Nanocomposites of red phosphorus as novel phosphorylating reagents. Dokl Chem 427:153–155

    Article  CAS  Google Scholar 

  65. Montchamp J-L (2013) Organophosphorus synthesis without phosphorus trichloride: the case for the hypophosphorous pathway. Phosphorus Sulfur Silicon 188:66–75

    Article  CAS  Google Scholar 

  66. Buchel KH, Moretto H-H, Woditsch P (2000) Industrial inorganic chemistry, 2nd edn. Wiley VCH, New York, pp 65–101. ISBN 3527298495

    Book  Google Scholar 

  67. Gusarova NK, Arbuzova SN, Trofimov BA (2012) Novel general halogen-free methodology for the synthesis of organophosphorus compounds. Pure Appl Chem 84:439–459

    Article  CAS  Google Scholar 

  68. Tarasova NP, Zanin AA, Smetannikov YV, Vilesov AS (2010) Advanced approaches in radiation-chemical synthesis of phosphorus-containing polymers. C R Chim 13:1028–1034

    Article  CAS  Google Scholar 

  69. Anderson NG, Coradetti ML, Cronin JA, Davies ML, Gardineer MB, Kotnis AS, Lust DA, Palaniswamy VA (1997) Generation and fate of regioisomeric side-chain impurities in the preparation of Fosinopril sodium. Org Proc Res Dev 1:315–319

    Article  CAS  Google Scholar 

  70. Montchamp J-L, Fischer HC (2015) Synthesis of H-phosphonate Intermediates and their use in preparing the herbicide Glyphosate. US 9035083 B2 Patent

    Google Scholar 

  71. Williams RH, Hamilton LA (1955) Disubstituted phosphine oxides and disubstituted phosphinic acids. II the Di-n-alkyl series. J Am Chem Soc 77:3411–3412

    Article  CAS  Google Scholar 

  72. Deprèle S, Montchamp J-L (2001) Triethylborane-initiated room temperature radical addition of hypophosphites to Olefins: synthesis of monosubstituted phosphinic acids and esters. J Org Chem 66:6745–6755

    Article  CAS  Google Scholar 

  73. Deprèle S, Montchamp J-L (2002) Palladium-catalyzed hydrophosphinylation of alkenes and alkynes. J Am Chem Soc 124:9386–9387

    Article  CAS  Google Scholar 

  74. Ribière P, Bravo-Altamirano K, Antczak MI, Hawkins JD, Montchamp J-L (2005) NiCl2-catalyzed hydrophosphinylation. J Org Chem 70:4064–4072

    Article  CAS  Google Scholar 

  75. Fisher HC, Berger O, Gelat F, Montchamp J-L (2014) Manganese-catalyzed and promoted reactions of H-phosphinate esters. Adv Synth Catal 356:1199–1204

    Article  CAS  Google Scholar 

  76. Fu X, Loh W-T, Zhang Y, Chen T, Ma T, Liu H, Wang J, Tan C-H (2009) Chiral guanidinium salt catalyzed enantioselective Phospha-Mannich reactions. Angew Chem Int Ed 48:7387–7390

    Article  CAS  Google Scholar 

  77. Berger O, Montchamp J-L (2014) Manganese-mediated intermolecular arylation of H-phosphinates and related compounds. Chem Eur J 20:12385–12388

    Article  CAS  Google Scholar 

  78. Kalek M, Johansson T, Jezowska M, Stawinski J (2010) Palladium-catalyzed propargylic substitution with phosphorus nucleophiles: efficient, stereoselective synthesis of allenylphosphonates and related compounds. Org Lett 12:4702–4704

    Article  CAS  Google Scholar 

  79. Deal EL, Petit C, Montchamp J-L (2011) Palladium-catalyzed cross-coupling of H-phosphinate esters with chloroarenes. Org Lett 13:3270–3273

    Article  CAS  Google Scholar 

  80. Chena T, Han L-B (2015) Optically active H-phosphinates and their stereospecific transformations into optically active P-stereogenic organophosphoryl compounds. Synlett 26:1153–1163

    Article  CAS  Google Scholar 

  81. Bochno M, Berlicki Ł (2014) A three-component synthesis of aminomethylenebis-H-phosphinates. Tetrahedron Lett 55:219–223

    Article  CAS  Google Scholar 

  82. Dayde B, Pierra C, Gosselin G, Surleraux D, Ilagouma AT, Van der Lee A, Volle J-N, Virieux D, Pirat J-L (2014) Synthesis of unnatural 2- and 3-deoxyfuranose analogues. Tetrahedron Lett 55:3706–3708

    Article  CAS  Google Scholar 

  83. Montchamp J-L (2014) Phosphinate chemistry in the 21st century- a viable alternative to the use of phosphorus trichloride. Acc Chem Res 47:77–87

    Article  CAS  Google Scholar 

  84. Kinbara A, Ito M, Abe T, Yamagishi T (2015) Nickel-catalyzed C-P cross-coupling reactions of aryl iodides with H-phosphinates. Tetrahedron 71:7614–7619

    Article  CAS  Google Scholar 

  85. Sun Y-M, Xu Z-Y, Liu L-J, Meng F-J, Zhang H, Fu B-C, Sun L-J, Niu M-J, Gong S-W, Zhao C-Q, Han L-B (2014) Preparation of enantiomerically pure α-hydroxyl phosphinates via hydrophosphorylation of aldehydes with H-phosphinate. Tetrahedron Asymmetry 25:1520–1526

    Article  CAS  Google Scholar 

  86. Richard V, Fisher HC, Montchamp J-L (2015) Manganese-mediated alkene chloro-phosphinoylation. Tetrahedron Lett 56:3197–3199

    Article  CAS  Google Scholar 

  87. Ji S-Y, Sun Y-M, Zhang H, Hou Q-G, Zhao C-Q (2014) Phosphonium salt induced stereoselective allylic rearrangement during chlorination of α-hydroxyallylphosphinates. Tetrahedron Lett 55:5742–5744

    Article  CAS  Google Scholar 

  88. Abdou WM, Bekheit MS (2015) One-pot three-component synthesis of peptidomimics for investigation of antibacterial and antineoplastic properties. Arab J Chem. doi:10.1016/j.arabjc.2015.04.014

    Google Scholar 

  89. Ali TE, Abdel-Kariem SM (2015) Methods for the synthesis of α-heterocyclic-heteroaryl-α-aminophosphonic acids and their esters. ARKIVOC 6:246–287

    Google Scholar 

  90. Zhou X, Born EJ, Allen C, Holstein SA, Wiemer DF (2015) N-Oxide derivatives of 3-(3-pyridyl)-2-phosphonopropanoic acids as potential inhibitors of Rab geranylgeranylation. Bioorg Med Chem Lett 25:2331–2334

    Article  CAS  Google Scholar 

  91. Gao Y, Wang G, Chen L, Xu P, Zhao Y, Zhou Y, Han L-B (2009) Copper-catalyzed aerobic oxidative coupling of terminal alkynes with H-phosphonates leading to alkynylphosphonates. J Am Chem Soc 131:7956–7957

    Article  CAS  Google Scholar 

  92. Liu L, Wu Y, Wang Z, Zhu J, Zhao Y (2014) Mechanistic insight into the copper-catalyzed phosphorylation of terminal alkynes: a combined theoretical and experimental study. J Org Chem 79:6816–6822

    Article  CAS  Google Scholar 

  93. Hong G, Mao D, Wu S, Wang L (2014) Palladium-catalyzed direct regioselective ortho-phosphonation of aromatic azo compounds with dialkyl phosphites. J Org Chem 79:10629–10635

    Article  CAS  Google Scholar 

  94. Chen XL, Li X, Qu L-B, Tang Y-C, Mai W-P, Wei D-H, Bi W-Z, Duan L-K, Sun K, Chen J-Y, Ke D-D, Zhao Y-F (2014) Peroxides as “switches” of dialkyl H-phosphonate: two mild and metal-free methods for preparation of 2-acylbenzothiazoles and dialkyl benzothiazol-2-ylphosphonates. J Org Chem 79:8407–8416

    Article  CAS  Google Scholar 

  95. Wu Y, Liu L, Yan K, Xu P, Gao Y, Zhao Y (2014) Nickel-catalyzed decarboxylative C − P cross-coupling of alkenyl acids with P(O)H compounds. J Org Chem 79:8118–8127

    Article  CAS  Google Scholar 

  96. Wang T, Sang S, Liu L, Qiao H, Gao Y, Zhao Y (2014) Experimental and theoretical study on palladium-catalyzed C − P bond formation via direct coupling of triarylbismuths with P(O) − H compounds. J Org Chem 79:608–617

    Article  CAS  Google Scholar 

  97. Zhao Y, Chen X, Chen T, Zhou Y, Yin S-F, Han L-B (2015) Catalyst-free and selective C − N bond functionalization: stereospecific three-component coupling of amines, dichloromethane, and P(O)H species affording α-aminophosphorus compounds. J Org Chem 80:62–69

    Article  CAS  Google Scholar 

  98. Gao Y, Deng H, Zhang S, Xue W, Wu Y, Qiao H, Xu P, Zhao Y (2015) Nickel-catalyzed one-pot tandem 1,4-1,2-addition of P(O)H compounds to 1,10-phenanthrolines. J Org Chem 80:1192–1199

    Article  CAS  Google Scholar 

  99. Lavén G, Kalek M, Jezowskaa M, Stawinski J (2010) Preparation of benzylphosphonates via a palladium(0)-catalyzed cross-coupling of H-phosphonate diesters with benzyl halides. Synthetic and mechanistic studies. New J Chem 34:967–975

    Article  CAS  Google Scholar 

  100. Jin X, Yamaguchi K, Mizuno N (2013) Copper-catalyzed oxidative cross-coupling of H-phosphonates and amides to N-acylphosphoramidates. Org Lett 15:418–421

    Article  CAS  Google Scholar 

  101. Mi X, Huang M, Zhang J, Wang C, Wu Y (2013) Regioselective palladium-catalyzed phosphonation of coumarins with dialkyl H-phosphonates via C-H functionalization. Org Lett 15:6266–6269

    Article  CAS  Google Scholar 

  102. Li X, Yang F, Wu Y, Wu Y (2014) Copper-mediated oxidative decarboxylative coupling of arylpropiolic acids with dialkyl H-phosphonates in water. Org Lett 16:992–995

    Article  CAS  Google Scholar 

  103. Ashmus RA, Lowary TL (2014) Synthesis of carbohydrate methyl phosphoramidates. Org Lett 16:2518–2521

    Article  CAS  Google Scholar 

  104. Kondoh A, Aoki T, Terada M (2014) Intramolecular cyclization of alkynyl α-ketoanilide utilizing [1,2]-phospha-Brook rearrangement catalyzed by phosphazene base. Org Lett 16:3528–3531

    Article  CAS  Google Scholar 

  105. Liu C, Zhang Y, Qian Q, Yuan D, Yao Y (2014) n-BuLi as a highly efficient precatalyst for hydrophosphonylation of aldehydes and unactivated ketones. Org Lett 16:6172–6175

    Article  CAS  Google Scholar 

  106. Rajalakshmia K, Krishnana PSG,b, Nayak SK (2015) Synthesis of dialkyl 2-(methacryloyloxyethyl) phosphonates, their characterization and polymerization. Polym Sci Ser. B 57:408–416

    Google Scholar 

  107. Kraszewski A, Stawinski J (2007) H-Phosphonates: versatile synthetic precursors to biologically active phosphorus compounds. Pure Appl Chem 79:2217–2227

    Article  CAS  Google Scholar 

  108. Zhang Q, Wei D, Cui X, Zhang D, Wang H, Wu Y (2015) Direct diphosphonylation of quinolines with H-phosphonates under metal-free conditions. Tetrahedron 71:6087–6093

    Article  CAS  Google Scholar 

  109. Olszewski TK, Majewski M (2015) Highly diastereoselective addition of chiral H-phosphonate to tert-butylsulfinyl aldimines: a convenient approach to (R)-α-aminophosphonic acids. Tetrahedron Asymmetry 26:846–852

    Article  CAS  Google Scholar 

  110. Jablonkai E, Keglevich G (2013) P-ligand-free, microwave-assisted variation of the Hirao reaction under solvent-free conditions; the P–C coupling reaction of P(O)H species and bromoarenes. Tetrahedron Lett 54:4185–4188

    Article  CAS  Google Scholar 

  111. Saga Y, Han D, Kawaguchi S-I, Ogawa A, Han L-B (2014) A salt-free synthesis of 1,2-bisphosphorylethanes via an efficient PMe3-catalyzed addition of P(O)H to vinylphosphoryl compounds. Tetrahedron Lett 56:5303–5305

    Article  CAS  Google Scholar 

  112. (a) Sobkowski M, Kraszewski A, Stawinski J (2015) Recent advances in H-phosphonate chemistry. Part 1. H-phosphonate esters: synthesis and basic reactions. Top Curr Chem 361:137–178. (b) Sobkowski M, Kraszewski A, Stawinski J (2015) Recent advances in H-phosphonate chemistry. Part 2. Synthesis of C-phosphonate derivatives. Top Curr Chem 361:179–216

    Google Scholar 

  113. Bukšnaitienė R, Urbanaitė A, Čikotienė I (2014) Formation of condensed 1H-Pyrrol-2-ylphosphonates and 1,2-dihydropyridin-2-ylphosphonates via Kabachnik − fields reaction of acetylenic aldehydes and subsequent 5-exo-dig or 6-endo-dig cyclizations. J Org Chem 79:6532–6553

    Article  CAS  Google Scholar 

  114. Wen Y-Q, Hertzberg R, Moberg C (2014) Enantioselective acylphosphonylation-dual Lewis acid − Lewis base activation of aldehyde and acylphosphonate. J Org Chem 79:6172–6178

    Article  CAS  Google Scholar 

  115. Debrouwer W, Heugebaert TSA, Stevens CV (2014) Preparation of tetrasubstituted 3-phosphonopyrroles through hydroamination: scope and limitations. J Org Chem 79:4322–4331

    Article  CAS  Google Scholar 

  116. Weise CF, Lauridsen VH, Rambo RS, Iversen EH, Olsen M-L, Jørgensen KA (2014) Organocatalytic access to enantioenriched dihydropyran phosphonates via an inverse-electron-demand hetero-Diels − Alder reaction. J Org Chem 79:3537–3546

    Article  CAS  Google Scholar 

  117. Son S-M, Lee H-K (2014) Dynamic kinetic resolution based asymmetric transfer hydrogenation of α-alkoxy-β-ketophosphonates. Diastereo- and enantioselective synthesis of monoprotected 1,2-dihydroxyphosphonates. J Org Chem 79:2666–2681

    Article  CAS  Google Scholar 

  118. Bera K, Namboothiri INN (2015) Quinine-derived thiourea and squaramide catalyzed conjugate addition of α-nitrophosphonates to enones: asymmetric synthesis of quaternary α-aminophosphonates. J Org Chem 80:1402–1413

    Article  CAS  Google Scholar 

  119. Qian R, Roller A, Hammerschmidt F (2015) Phosphonate − phosphinate rearrangement. J Org Chem 80:1082–1091

    Article  CAS  Google Scholar 

  120. Specklin S, Cossy J (2015) Chemoselective synthesis of β-ketophosphonates using lithiated α-(trimethylsilyl)methylphosphonate. J Org Chem 80:3302–3308

    Article  CAS  Google Scholar 

  121. Li X, Jin C, Gu L (2015) C − H Hydroxylation of phosphonates with oxygen in [bmIm]OH to produce quaternary α-hydroxy phosphonates. J Org Chem 80:2443–2447

    Article  CAS  Google Scholar 

  122. Vicario J, Ortiz P, Ezpeleta JM, Palacios F (2015) Asymmetric synthesis of functionalized tetrasubstituted α-aminophosphonates through enantioselective aza-Henry reaction of phosphorylated ketimines. J Org Chem 80:156–164

    Article  CAS  Google Scholar 

  123. De la Cruz A, He A, Thanavaro A, Yan B, Spilling CD, Rath NP (2005) Allylic hydroxy phosphonates: versatile chiral building blocks. J Organomet Chem 690:2577–2592

    Article  CAS  Google Scholar 

  124. Wolf T, Steinbach T, Wurm FR (2015) A library of well-defined and water-soluble poly(alkyl phosphonate)s with adjustable hydrolysis. Macromolecules 48:3853–3863

    Article  CAS  Google Scholar 

  125. Gelat F, Lacomme C, Berger O, Gavara L, Montchamp J-L (2015) Synthesis of (phosphonomethyl)phosphinate pyrophosphate analogues via the phospha-Claisen condensation. Org Biomol Chem 13:825–833

    Article  CAS  Google Scholar 

  126. Du T, Du F, Ning Y, Peng Y (2015) Organocatalytic enantioselective 1,3-dipolar cycloadditions between Seyferth − Gilbert reagent and isatylidene malononitriles: synthesis of chiral spiro-phosphonylpyrazoline-oxindoles. Org Lett 17:1308–1311

    Article  CAS  Google Scholar 

  127. Fang Y, Zhang L, Li J, Jin X, Yuan M, Li R, Wu R, Fang J (2015) Applications of α-phosphonovinyl tosylates in the synthesis of α-arylethenylphosphonates via Suzuki − Miyaura cross-coupling reactions. Org Lett 17:798–801

    Article  CAS  Google Scholar 

  128. Wang J, Rainier JD (2015) Reactivity of vinyl phosphonate containing diazoesters: formation, reactivity, and utility. Org Lett 17:266–269

    Article  CAS  Google Scholar 

  129. Kim C-E, Son J-Y, Shin S, Seo B, Lee PH (2015) Alkenylation of phosphacoumarins via aerobic oxidative Heck reactions and their synthetic application to fluorescent benzophosphacoumarins. Org Lett 17:908–911

    Article  CAS  Google Scholar 

  130. Murai M, Nakamura M, Takai K (2014) Rhenium-catalyzed synthesis of 2H-1,2-oxaphosphorin 2-oxides via the regio- and stereoselective addition reaction of β-keto phosphonates with alkynes. Org Lett 16:5784–5787

    Article  CAS  Google Scholar 

  131. Kim S, Kim C-E, Seo B, Lee PH (2014) In Situ generation of phosphoryl alkylindiums and their synthetic application to arylalkyl phosphonates via palladium-catalyzed cross-coupling reactions. Org Lett 16:5552–5555

    Article  CAS  Google Scholar 

  132. Patra A, Bhunia A, Biju AT (2014) Facile synthesis of γ-ketophosphonates by an intermolecular Stetter reaction onto vinylphosphonates. Org Lett 16:4798–4801

    Article  CAS  Google Scholar 

  133. Smith SR, Leckie SM, Holmes R, Douglas J, Fallan C, Shapland P, Pryde D, Slawin AMZ, Smith AD (2014) α-Ketophosphonates as ester surrogates: isothiourea-catalyzed asymmetric diester and lactone synthesis. Org Lett 16:2506–2509

    Article  CAS  Google Scholar 

  134. Montel S, Raffier L, He Y, Walsh PJ (2014) Palladium-catalyzed α-arylation of benzylic phosphonates. Org Lett 16:1446–1449

    Article  CAS  Google Scholar 

  135. Lo Y-W, Fang J-M (2015) A short synthetic pathway via three-component coupling reaction to tamiphosphor possessing anti-influenza activity. Tetrahedron 71:266–270

    Article  CAS  Google Scholar 

  136. Kolodiazhnyi OI, Kukhar VP, Kolodiazhna AO (2015) Asymmetric catalysis as a method for the synthesis of chiral organophosphorus compounds. Tetrahedron Asymmetry 25:865–922

    Article  CAS  Google Scholar 

  137. Zhou Y, Ye F, Wang X, Xu S, Zhang Y, Wang J (2015) Synthesis of alkenylphosphonates through palladium-catalyzed coupling of α-diazo phosphonates with benzyl or allyl halides. J Org Chem 80:6109–6118

    Article  CAS  Google Scholar 

  138. Macegoniuk K, Dziełak A, Mucha A, Berlicki Ł (2015) Bis(aminomethyl)phosphinic acid, a highly promising scaffold for the development of bacterial urease inhibitors. ACS Med Chem Lett 6:146–150

    Article  CAS  Google Scholar 

  139. Reznikova AN, Klimochkina YN, Savinovab OV, Orlovab SV, Bogdanovab NL, Borekob EI (2014) Synthesis and antiviral activity of adamantyl-containing phosphonous and phosphinic acids. Russ J Gen Chem 84:1524–1530

    Article  CAS  Google Scholar 

  140. Markoulides MS, Regan AC (2011) Synthesis of phosphinate analogues of the phospholipid anti-tumour agent hexadecylphosphocholine (miltefosine). Tetrahedron Lett 52:2954–2956

    Article  CAS  Google Scholar 

  141. Chelliah S, Francine A (2015) Expeditious Synthesis of bis-(α-hydroxyalkyl)phosphinic acid using N-O-bis(trimethylsilyl)acetamide (BSA). Curr Org Synth 12:168–172

    Article  CAS  Google Scholar 

  142. Vassiliou S, Węglarz-Tomczak E, Berlicki Ł, Pawełczak M, Nocek B, Mulligan R, Joachimiak A, Mucha A (2014) Structure-guided, single-point modifications in the phosphinic dipeptide structure yield highly potent and selective inhibitors of neutral aminopeptidases. J Med Chem 57:8140–8151

    Article  CAS  Google Scholar 

  143. Coudray L, Bravo-Altamirano K, Montchamp J-L (2008) Allylic phosphinates via palladium-catalyzed allylation of H-phosphinic acids with allylic alcohols. Org Lett 10:1123–1126

    Article  CAS  Google Scholar 

  144. Roux L, Canard B, Alvarez K (2014) (R)-9-[2-(Hydroxyphosphinylmethoxy)propyl]adenine as the precursor molecule for antivirals. Tetrahedron Lett 55:4168–4171

    Article  CAS  Google Scholar 

  145. Bravo-Altamirano K, Montchamp J-L (2007) A novel approach to phosphonic acids from hypophosphorous acid. Tetrahedron Lett 48:5755–5759

    Article  CAS  Google Scholar 

  146. Coudray L, Montchamp J-L (2009) Temporary protection of H-phosphinic acids as a synthetic strategy. Eur J Org Chem 2009:4646–4654

    Article  CAS  Google Scholar 

  147. Gouault-Bironneau S, Deprèle S, Sutor A, Montchamp J-L (2005) Radical reaction of sodium hypophosphite with terminal alkynes: synthesis of 1,1-bis-H-phosphinates. Org Lett 7:5909–5912

    Article  CAS  Google Scholar 

  148. Jablonkai E, Henyecz R, Milen M, Kóti J, Keglevich G (2014) T3P®-assisted esterification and amidation of phosphinic acids. Tetrahedron 70:8280–8285

    Article  CAS  Google Scholar 

  149. Ortial S, Fisher HC, Montchamp J-L (2013) Hydrophosphinylation of unactivated terminal alkenes catalyzed by nickel chloride. J Org Chem 78:6599–6608

    Article  CAS  Google Scholar 

  150. Berchel M, Haddad J, Le Corre SL, Haelters J-P, Jaffrès P-A (2015) Synthesis of lipid-based unsymmetrical O, O-dialkylphosphites. Tetrahedron Lett 56:2345–2348

    Article  CAS  Google Scholar 

  151. Chowdhury S, Muni NJ, Greenwood NP, Pepperbergc DR, Standaert RF (2007) Phosphonic acid analogs of GABA through reductive dealkylation of phosphonic diesters with lithium trialkylborohydrides. Bioorg Med Chem Lett 17:3745–3748

    Article  CAS  Google Scholar 

  152. Shin S, Jeong Y, Jeon WH, Lee PH (2014) Phosphaannulation by palladium-catalyzed carbonylation of C − H bonds of phosphonic and phosphinic acids. Org Lett 16:2930–2933

    Article  CAS  Google Scholar 

  153. Eom D, Jeong Y, Kim YR, Lee E, Choi W, Lee PH (2013) Palladium-catalyzed C(sp2 and sp3)-H activation/C-O bond formation: synthesis of benzoxaphosphole 1- and 2-oxides. Org Lett 15:5210–5213

    Article  CAS  Google Scholar 

  154. Jeon WH, Son J-Y, Kim S-E, Lee PH (2015) Phosphaannulation of aryl- and benzylphosphonic acids with unactivated alkenes via palladium-catalyzed C-H activation/oxidative cyclization reaction. Adv Synth Catal 357:811–817

    Article  CAS  Google Scholar 

  155. Hersh WH (2015) Synthesis of dinucleoside acylphosphonites by phosphonodiamidite chemistry and investigation of phosphorus epimerization. Beilstein J Org Chem 11:184–191

    Article  CAS  Google Scholar 

  156. Leypold M, Wallace PW, Kljajic M, Schittmayer M, Pletz J, Illaszewicz-Trattner C, Guebitz GM, Birner-Gruenberger R, Breinbauer R (2015) A robust and simple protocol for the synthesis of arylfluorophosphonates. Tetrahedron Lett 56:5619–5622

    Article  CAS  Google Scholar 

  157. Błazewska KM (2014) McKenna reaction-which oxygen attacks bromotrimethylsilane? J Org Chem 79:408–412

    Article  CAS  Google Scholar 

  158. Bravo-Altamirano K, Abrunhosa-Thomas I, Montchamp J-L (2008) Palladium-catalyzed reactions of hypophosphorous compounds with allenes, dienes, and allylic electrophiles: methodology for the synthesis of allylic H-phosphinates. J Org Chem 73:2292–2301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are expressed to the EC project SUSPHOS, RFP7-PEOPLE-2012-ITN - 317404 “A European Training Network for Sus tainable Phos phorus Chemistry” for funding this research activity and to ECRF project Firenze Hydrolab-2 for a grant to MSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Peruzzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Caporali, M., Serrano-Ruiz, M., Peruzzini, M. (2016). Benign Chlorine-Free Approaches to Organophosphorus Compounds. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_3

Download citation

Publish with us

Policies and ethics