Skip to main content

Cellular Therapies: Gene Editing and Next-Gen CAR T Cells

  • Chapter
  • First Online:
Novel Immunotherapeutic Approaches to the Treatment of Cancer

Abstract

Gene therapy has emerged as a promising method to improve patient care and ideally cure genetic diseases. Gene editing methods have allowed cancer target identification and efficient drug screenings. Cancer cell lines or animal models can be created using a series of genome edits or chromosomal rearrangements. The use of engineered nucleases has greatly facilitated gene editing for research and is showing promise for therapy in many fields. Recent advances in delivery, and increases in activity and specificity will allow clinical gene correction in tumor or susceptible cells. Significant advances have been made using zinc finger nucleases (ZFNs) and TAL effector nucleases (TALENs). Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas) have similar capabilities, with some additional features including simpler design and cloning, and the capability of targeting multiple loci in the same cell. As cancer develops from multiple genetic and epigenetic changes, CRISPR/Cas systems and other nucleases are showing great promise in cancer modeling and therapy. Adoptive cell therapy using T cells that have been edited to express engineered chimeric antigen receptors (CARs) or T-cell receptors (TCRs) have succeeded in targeting patient tumors. Second and third generation CAR T cells have more modifications, including the addition of costimulatory molecules, and have shown improved results. A number of systems have been used for efficient knockin of the CAR or TCR and in the added gene editing steps, such as knocking out the endogenous TCR. As with therapeutic gene editing, improving delivery and reducing the possibility of off-target events are important criteria for optimizing ZFN, TALEN, and CRISPR/Cas nuclease editing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almåsbak, H., et al.: Inclusion of an IgG1-Fc spacer abrogates efficacy of CD19 CAR T cells in a xenograft mouse model. Gene Ther. 22, 391–403 (2015)

    Article  PubMed  CAS  Google Scholar 

  • Amado, R.G., Chen, I.S.: Lentiviral vectors—the promise of gene therapy within reach? Science 285, 674–676 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Ammar, I., et al.: Retargeting transposon insertions by the adeno-associated virus Rep protein. Nucleic Acids Res. 40, 6693–6712 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ankri, C., Cohen, C.J.: Out of the bitter came forth sweet: Activating CD28-dependent co-stimulation via PD-1 ligands. Oncoimmunology 3, e27399 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Aouida, M., et al.: Efficient fdCas9 synthetic endonuclease with improved specificity for precise genome engineering. PLoS One 10, e0133373 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aronovich, E.L., McIvor, R.S., Hackett, P.B.: The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum. Mol. Genet. 20, R14–R20 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae, S., Park, J., Kim, J.S.: Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beane, J.D., et al.: Clinical scale zinc finger nuclease-mediated gene editing of PD-1 in tumor infiltrating lymphocytes for the treatment of metastatic melanoma. Mol. Ther. (2015)

    Google Scholar 

  • Berdien, B., Mock, U., Atanackovic, D., Fehse, B.: TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther. 21, 539–548 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Bitinaite, J., Wah, D.A., Aggarwal, A.K., Schildkraut, I.: FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. U. S. A. 95, 10570–10575 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissel, S., et al.: megaTALs: a rare-cleaving nuclease architecture for therapeutic genome engineering. Nucleic Acids Res. 42, 2591–2601 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolotin, A., Quinquis, B., Sorokin, A., Ehrlich, S.D.: Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Brentjens, R.J., et al.: CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 5, 177ra138 (2013)

    Article  CAS  Google Scholar 

  • Budde, L.E., et al.: Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS One 8, e82742 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai, Y., Bak, R.O., Mikkelsen, J.G.: Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife 3, e01911 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Carroll, D., Morton, J.J., Beumer, K.J., Segal, D.J.: Design, construction and in vitro testing of zinc finger nucleases. Nat. Protoc. 1, 1329–1341 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Casucci, M., Bondanza, A.: Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. J. Cancer 2, 378–382 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak, T., et al.: Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Z., et al.: Receptor-mediated delivery of engineered nucleases for genome modification. Nucleic Acids Res. 41, e182 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., et al.: Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, P.S., Meyerson, M.: Targeted genomic rearrangements using CRISPR/Cas technology. Nat. Commun. 5, 3728 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, Y., et al.: A high throughput microelectroporation device to introduce a chimeric antigen receptor to redirect the specificity of human T cells. Biomed. Microdevices 12, 855–863 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Chylinski, K. et al.: The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10, 726–737 (2013)

    Google Scholar 

  • Cong, L., et al.: Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooney, A.L., Singh, B.K., Sinn, P.L.: Hybrid nonviral/viral vector systems for improved piggyBac DNA transposon in vivo delivery. Mol. Ther. 23, 667–674 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper, L.J., et al.: Manufacturing of gene-modified cytotoxic T lymphocytes for autologous cellular therapy for lymphoma. Cytotherapy 8, 105–117 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Cradick, T.J., Keck, K., Bradshaw, S., Jamieson, A.C., McCaffrey, A.P.: Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol. Ther. 18, 947–954 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cradick, T.J., Ambrosini, G., Iseli, C., Bucher, P., McCaffrey, A.P.: ZFN-Site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics 12, 152 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cradick, T.J., Fine, E.J., Antico, C.J., Bao, G.: CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. 41, 9584–9592 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cradick, T.J., Qui, P., Lee, C.M., Fine, E.J., Bao, G.: COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites. Mol. Ther. Nucleic Acids 3, e214 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curran, K.J., Pegram, H.J., Brentjens, R.J.: Chimeric antigen receptors for T cell immunotherapy: current understanding and future directions. J. Gene Med. 14, 405–415 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniels, T.R., et al.: The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim. Biophys. Acta 1820, 291–317 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, L., Maizels, N.: Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc. Natl. Acad. Sci. U. S. A. 111, E924–E932 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jong, J., et al.: Chromatin landscapes of retroviral and transposon integration profiles. PLoS Genet. 10, e1004250 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Deltcheva, E., et al.: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derniame, S. et al.: American Society of Hematology, San Francisco, CA (2014)

    Google Scholar 

  • Devaud, C., John, L.B., Westwood, J.A., Darcy, P.K., Kershaw, M.H.: Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology 2, e25961 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, L., et al.: Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyon, Y., et al.: Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat. Methods 8, 74–79 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Durai, S., et al.: Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. 33, 5978–5990 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis, B.L., Hirsch, M.L., Porter, S.N., Samulski, R.J., Porteus, M.H.: Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther. 20, 35–42 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Eroshenko, N., Church, G.M.: Mutants of Cre recombinase with improved accuracy. Nat. Commun. 4, 2509 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eshhar, Z., Waks, T., Bendavid, A., Schindler, D.G.: Functional expression of chimeric receptor genes in human T cells. J. Immunol. Methods 248, 67–76 (2001)

    Article  CAS  PubMed  Google Scholar 

  • Esvelt, K.M., et al.: Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorov, V.D., Themeli, M., Sadelain, M.: PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 5, 215ra172 (2013)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fine, E.J., Cradick, T.J., Zhao, C.L., Lin, Y., Bao, G.: An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Res. 42, e42 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonfara, I., et al.: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42, 2577–2590 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frock, R.L., et al.: Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179–186 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y., et al.: High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M., Joung, J.K.: Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel, R., et al.: An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat. Biotechnol. 29, 816–823 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Gaj, T., Guo, J., Kato, Y., Sirk, S.J., Barbas, C.F.: Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat. Methods 9, 805–807 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj, T., Gersbach, C.A., Barbas, C.F.: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31, 397–405 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaj, T., et al.: Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J. Am. Chem. Soc. 136, 5047–5056 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garneau, J.E., et al.: The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V.: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109, E2579–E2586 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gattinoni, L., et al.: Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest. 115, 1616–1626 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts, A.M., et al.: Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert, L.A., et al.: Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grupp, S.A., et al.: Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilinger, J.P., Thompson, D.B., Liu, D.R.: Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, P.B., Largaespada, D.A., Cooper, L.J.: A transposon and transposase system for human application. Mol. Ther. 18, 674–683 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale, C.R., et al.: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139, 945–956 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale, M., et al.: American Society of Gene & Cell Therapy, New Orleans, LA (2015)

    Google Scholar 

  • Heckl, D., et al.: Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat. Biotechnol. 32, 941–946 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendel, A., et al.: Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep. 7, 293–305 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendel, A., et al.: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Holkers, M., et al.: Differential integrity of TALE nuclease genes following adenoviral and lentiviral vector gene transfer into human cells. Nucleic Acids Res. 41, e63 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath, P., Barrangou, R.: CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Hou, Z., et al.: Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. U. S. A. 110, 15644–15649 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, P.D., et al.: DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huls, M.H., et al.: Clinical application of Sleeping Beauty and artificial antigen presenting cells to genetically modify T cells from peripheral and umbilical cord blood. J. Vis. Exp., e50070 (2013)

    Google Scholar 

  • Irving, B.A., Weiss, A.: The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991)

    Article  CAS  PubMed  Google Scholar 

  • Jasin, M.: Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Jena, B., Moyes, J.S., Huls, H., Cooper, L.J.: Driving CAR-based T-cell therapy to success. Curr. Hematol. Malig. Rep. 9, 50–56 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jensen, M.C., et al.: Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 16, 1245–1256 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A.: RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiangtao, R., et al.: American Society of Hematology Annual Meeting, Orlando, FL (2015)

    Google Scholar 

  • Jinek, M., et al.: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Jinek, M., et al.: RNA-programmed genome editing in human cells. Elife 2, e00471 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  • Joglekar, A.V., et al.: Integrase-defective lentiviral vectors as a delivery platform for targeted modification of adenosine deaminase locus. Mol. Ther. 21, 1705–1717 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasap, C., Elemento, O., Kapoor, T.M.: DrugTargetSeqR: a genomics- and CRISPR-Cas9-based method to analyze drug targets. Nat. Chem. Biol. 10, 626–628 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kay, M.A.: State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Keswani, R., Su, K., Pack, D.W.: Efficient in vitro gene delivery by hybrid biopolymer/virus nanobiovectors. J. Control. Release 192, 40–46 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettlun, C., Galvan, D.L., George, A.L., Kaja, A., Wilson, M.H.: Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol. Ther. 19, 1636–1644 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, Y.G., Li, L., Chandrasegaran, S.: Insertion and deletion mutants of FokI restriction endonuclease. J. Biol. Chem. 269, 31978–31982 (1994)

    CAS  PubMed  Google Scholar 

  • Kim, S., Kim, D., Cho, S.W., Kim, J., Kim, J.S.: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., et al.: Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015). 231 p following 243

    Article  CAS  PubMed  Google Scholar 

  • Kleinstiver, B.P., et al.: Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kohn, D.B., et al.: CARs on track in the clinic. Mol. Ther. 19, 432–438 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera, M.C., Yusa, K.: Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Konermann, S., et al.: Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowolik, C.M., et al.: CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 66, 10995–11004 (2006)

    Article  CAS  PubMed  Google Scholar 

  • La Russa, M.F., Qi, L.S.: The new state of the art: Cas9 for gene activation and repression. Mol. Cell. Biol. 35, 3800–3809 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larson, M.H., et al.: CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, C.M., Flynn, R., Hollywood, J.A., Scallan, M.F., Harrison, P.T.: Correction of the ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores. Open Access 1, 99–108 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine, B.L.: Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther. 22, 79–84 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Li, M.A., et al.: The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol. Cell. Biol. 33, 1317–1330 (2013a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., et al.: piggyBac transposase tools for genome engineering. Proc. Natl. Acad. Sci. U. S. A. 110, E2279–E2287 (2013b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, K.I., Klimczak, R., Yu, J.H., Schaffer, D.V.: Specific insertions of zinc finger domains into Gag-Pol yield engineered retroviral vectors with selective integration properties. Proc. Natl. Acad. Sci. U. S. A. 107, 12475–12480 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y., et al.: SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Res. 42, e47 (2014a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S.R., et al.: The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol. Ther. Nucleic Acids 3, e186 (2014b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y., et al.: CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42, 7473–7485 (2014c)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay, C.R., Roth, D.B.: An unbiased method for detection of genome-wide off-target effects in cell lines treated with zinc finger nucleases. Methods Mol. Biol. 1114, 353–369 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Lipowska-Bhalla, G., Gilham, D.E., Hawkins, R.E., Rothwell, D.G.: Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol. Immunother. 61, 953–962 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., et al.: Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells. Nat. Commun. 5, 5393 (2014a)

    Article  CAS  PubMed  Google Scholar 

  • Liu, J., Gaj, T., Patterson, J.T., Sirk, S.J., Barbas, C.F.: Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 9, e85755 (2014b)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, J., Gaj, T., Wallen, M.C., Barbas, C.F.: Improved cell-penetrating zinc-finger nuclease proteins for precision genome engineering. Mo.l Ther. Nucleic Acids 4, e232 (2015)

    Article  CAS  Google Scholar 

  • Lombardo, A., et al.: Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat. Biotechnol. 25, 1298–1306 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Maeder, M.L., et al.: CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney, K.M., Rennert, P.D., Freeman, G.J.: Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Mali, P., et al.: CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marraffini, L.A., Sontheimer, E.J.: CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, J.C., et al.: An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Miller, J.C., et al.: A TALE nuclease architecture for efficient genome editing. Nat. Biotechnol. 29, 143–148 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Moon, R.T., Kohn, A.D., De Ferrari, G.V., Kaykas, A.: WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5, 691–701 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Moore, J.D.: The impact of CRISPR-Cas9 on target identification and validation. Drug Discov. Today 20, 450–457 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Mou, H., Kennedy, Z., Anderson, D.G., Yin, H., Xue, W.: Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 7, 53 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mussolino, C., et al.: A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 39, 9283–9293 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussolino, C., et al.: TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res. 42, 6762–6773 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborn, M.J., et al.: Evaluation of TCR Gene Editing achieved by TALENs, CRISPR/Cas9 and megaTAL nucleases. Mol. Ther. (2015). doi:10.1038/mt.2015.197

    PubMed  Google Scholar 

  • Pattanayak, V., Ramirez, C.L., Joung, J.K., Liu, D.R.: Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods 8, 765–770 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pegram, H.J., Park, J.H., Brentjens, R.J.: CD28z CARs and armored CARs. Cancer J. 20, 127–133 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, E.E., et al.: Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 26, 808–816 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Pinera, P., et al.: RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philip, B., et al.: A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy. Blood 124, 1277–1287 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Platt, R.J., et al.: CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poirot, L., et al.: Multiplex genome edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 75, 3853–3864 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Porteus, M.H., Baltimore, D.: Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003)

    Article  PubMed  Google Scholar 

  • Porteus, M.H., Carroll, D.: Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23, 967–973 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Pule, M.A., et al.: Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, L.S., et al.: Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabinovich, P.M., et al.: Chimeric receptor mRNA transfection as a tool to generate antineoplastic lymphocytes. Hum. Gene Ther. 20, 51–61 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna, S., et al.: Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramirez, C.L., et al.: Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40, 5560–5568 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., et al.: Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., et al.: Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ran, F.A., et al.: In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restifo, N.P., Dudley, M.E., Rosenberg, S.A.: Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Reyon, D., et al.: FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 30, 460–465 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru, R., et al.: Targeted genome engineering in human induced pluripotent stem cells by penetrating TALENs. Cell Regen. (Lond.) 2, 5 (2013)

    Article  CAS  Google Scholar 

  • Sánchez-Rivera, F.J., Jacks, T.: Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sander, J.D., Joung, J.K.: CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander, J.D., et al.: ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool. Nucleic Acids Res. 38(Suppl), W462–W468 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sander, J.D., et al.: In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. 41, e181 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller, J.T., Lowy, D.R.: Virus infection and human cancer: an overview. Recent Results Cancer Res. 193, 1–10 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Scholl, C., et al.: Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137, 821–834 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Scholler, J., et al.: Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 4, 132ra153 (2012)

    Article  Google Scholar 

  • Scrace, S.F., et al.: Abstract 700: investigating KRAS synthetic lethal/co-dependency interactions using siRNA and CRISPR. Cancer Res. 75, 700 (2015)

    Article  Google Scholar 

  • Shalem, O., et al.: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalem, O., Sanjana, N.E., Zhang, F.: High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, J., et al.: Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, B., et al.: Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11, 399–402 (2014)

    Google Scholar 

  • Shuvalov, O., Barlev, N.A.: Current genome editing tools in gene therapy: new approaches to treat cancer. Curr. Gene Ther. 15, 511–529 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Singh, H., et al.: Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system. Cancer Res. 68, 2961–2971 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Springer, C.J., Niculescu-Duvaz, I.: Prodrug-activating systems in suicide gene therapy. J. Clin. Invest. 105, 1161–1167 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava, S., Riddell, S.R.: Engineering CAR-T cells: design concepts. Trends Immunol. 36, 494–502 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Stratton, M.R.: Exploring the genomes of cancer cells: progress and promise. Science 331, 1553–1558 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Streubel, J., Blücher, C., Landgraf, A., Boch, J.: TAL effector RVD specificities and efficiencies. Nat. Biotechnol. 30, 593–595 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Szczepek, M., et al.: Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat. Biotechnol. 25, 786–793 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Tan, W., Dong, Z., Wilkinson, T.A., Barbas, C.F., Chow, S.A.: Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. J. Virol. 80, 1939–1948 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teachey, D.T., et al.: Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 121, 5154–5157 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tebas, P., et al.: Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson, J.M., Nguyen, Q.H., Singh, M., Razorenova, O.V.: Approaches to identifying synthetic lethal interactions in cancer. Yale J. Biol. Med. 88, 145–155 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torikai, H., et al.: A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood 119, 5697–5705 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, S.Q., et al.: GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2014a)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsai, S.Q., et al.: Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urnov, F.D., et al.: Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., Gregory, P.D.: Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Valton, J., et al.: A multidrug-resistant engineered CAR T cell for allogeneic combination immunotherapy. Mol. Ther. 23, 1507–1518 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt, K., et al.: Retargeting sleeping beauty transposon insertions by engineered zinc finger DNA-binding domains. Mol. Ther. 20, 1852–1862 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., et al.: Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. 22, 1316–1326 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, H., et al.: One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T., Wei, J.J., Sabatini, D.M., Lander, E.S.: Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., et al.: Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat. Biotechnol. 33, 175–178 (2015a)

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., et al.: Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015b)

    Article  CAS  PubMed  Google Scholar 

  • Weber, E., Gruetzner, R., Werner, S., Engler, C., Marillonnet, S.: Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6, e19722 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, J., et al.: CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice. Proc. Natl. Acad. Sci. U. S. A. 112, 13982–13987 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, A.V., et al.: Rational design of a split-Cas9 enzyme complex. Proc. Natl. Acad. Sci. U. S. A. 112, 2984–2989 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., et al.: TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus. Biochem. Biophys. Res. Commun. 446, 261–266 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Xiao, A., et al:. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics (2014)

    Google Scholar 

  • Xue, W., et al.: CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514, 380–384 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yant, S.R., Huang, Y., Akache, B., Kay, M.A.: Site-directed transposon integration in human cells. Nucleic Acids Res. 35, e50 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin, H., et al.: Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 32, 551–553 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon, S.H., et al.: Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. 16, 489–497 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., et al.: Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Y., et al.: Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci. Rep. 4, 3943 (2014)

    PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., et al.: High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Y., et al.: Anti-CD19 chimeric antigen receptor-modified T cells for B-cell malignancies: a systematic review of efficacy and safety in clinical trials. Eur. J. Haematol. (2015). doi:10.1111/ejh.12602

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Cradick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cradick, T.J. (2016). Cellular Therapies: Gene Editing and Next-Gen CAR T Cells. In: Rennert, P. (eds) Novel Immunotherapeutic Approaches to the Treatment of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-29827-6_9

Download citation

Publish with us

Policies and ethics