Skip to main content

Cutaneous Dendritic Cells in Health and Disease

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

Dendritic cells (DCs) are a heterogeneous cell type found in lymphatic and peripheral tissues. They function as professional antigen-presenting cells (APCs), specialized to acquire antigen from their environment that they process and present to T cells. In addition, DC participate in the generation of local inflammation and suppression of inappropriate immune responses. Thus, they play a critical role in the initiation, propagation and suppression of immune responses that promote health and autoimmune disease. The skin of humans and mice contain several distinct subsets of DC (epidermal Langerhans cells are the most well-known) that are speculated to have varied and versatile functions. In this chapter, we discuss dendritic cells as important players of the innate and adaptive immune system. We will cover their roles in acquiring antigen, inducing T cell responses, and characterizing the functional differences between distinct skin DC subsets. Finally, we will relate DC in relation to human health including their contribution to diseases such as allergic contact dermatitis and psoriasis and their ability to serve as therapeutic targets in vaccinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langerhans P. Ueber die Nerven der menschlichen Haut. Archiv f pathol Anat. 1868;44(2–3):325–37. Springer-Verlag.

    Article  Google Scholar 

  2. Tauber AI. Timeline: Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol. 2003;4(11):897–901. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  3. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 1974;139(2):380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lens JW, Drexhage HA, Benson W, Balfour BM. A study of cells present in lymph draining from a contact allergic reaction in pigs sensitized to DNFB. Immunology. 1983;49(3):415. Wiley-Blackwell.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature. 1979;282(5736):324–6.

    Article  CAS  PubMed  Google Scholar 

  7. Frelinger JA, Frelinger JG. Bone marrow origin of Ia molecules purified from epidermal cells. J Invest Dermatol. 1980;75(1):68–70. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  8. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985;161(3):526–46.

    Article  CAS  PubMed  Google Scholar 

  9. Savina A, Amigorena S. Phagocytosis and antigen presentation in dendritic cells. Immunol Rev. 2007;219(1):143–56.

    Article  CAS  PubMed  Google Scholar 

  10. ReiseSousa C. Dendritic cells in a mature age. Nat Rev Immunol. 2006;6(6):476–83.

    Article  CAS  Google Scholar 

  11. Robinson MJ, Sancho D, Slack EC, LeibundGut-Landmann S, Reis e Sousa C. Myeloid C-type lectins in innate immunity. Nat Immunol. 2006;7(12):1258–65.

    Article  CAS  PubMed  Google Scholar 

  12. Hargreaves DC, Hyman PL, Lu TT, Ngo VN, Bidgol A, Suzuki G, et al. A coordinated change in chemokine responsiveness guides plasma cell movements. J Exp Med. 2001;194(1):45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ngo VN, Lucy Tang H, Cyster JG. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med. 1998;188(1):181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013;31:443–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Jong A, Cheng T-Y, Huang S, Gras S, Birkinshaw RW, Kasmar AG, et al. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat Immunol. 2013;15(2):177–85. Nature Publishing Group.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brigl M, Brenner MB. CD1: antigen presentation and T cell function. Annu Rev Immunol. 2004;22(1):817–90.

    Article  CAS  PubMed  Google Scholar 

  17. Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M, Doorenspleet ME, et al. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol. 2013;14(7):706–13. Nature Publishing Group.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Larsen CP. Functional expression of the costimulatory molecule, B7/BB1, on murine dendritic cell populations. J Exp Med. 1992;176(4):1215–20.

    Article  CAS  PubMed  Google Scholar 

  19. Inaba K. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro. J Exp Med. 1994;180(5):1849–60.

    Article  CAS  PubMed  Google Scholar 

  20. Jenkins MK, Schwartz RH. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 1987;165(2):302–19.

    Article  CAS  PubMed  Google Scholar 

  21. Carreno BM, Collins M. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol. 2002;20(1):29–53. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA.

    Article  CAS  PubMed  Google Scholar 

  22. Watts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol (Ann Rev). 2005;23(1):23–68.

    Article  CAS  Google Scholar 

  23. Curtsinger JM, Schmidt CS, Mondino A, Lins DC, Kedl RM, Jenkins MK, et al. Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol. 1999;162(6):3256–62.

    CAS  PubMed  Google Scholar 

  24. Hsieh C, Macatonia S, Tripp C, Wolf S, O’Garra A, Murphy K. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science. 1993;260(5107):547–9.

    Article  CAS  PubMed  Google Scholar 

  25. Owaki T, Asakawa M, Morishima N, Hata K, Fukai F, Matsui M, et al. A role for IL-27 in early regulation of Th1 differentiation. J Immunol. 2005;175(4):2191–200.

    Article  CAS  PubMed  Google Scholar 

  26. Takeda A, Hamano S, Yamanaka A, Hanada T, Ishibashi T, Mak TW, et al. Cutting Edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol. 2003;170(10):4886–90.

    Article  CAS  PubMed  Google Scholar 

  27. Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat Immunol. 2008;9(6):641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    Article  CAS  PubMed  Google Scholar 

  29. Sutton C, Brereton C, Keogh B, Mills KHG, Lavelle EC. A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis. J Exp Med. 2006;203(7):1685–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaw MH, Kamada N, Kim Y-G, Nuñez G. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med. 2012;209(2):251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu W, Troutman TD, Edukulla R, Pasare C. Priming microenvironments dictate cytokine requirements for T helper 17 cell lineage commitment. Immunity. 2011;35(6):1010–22. Elsevier Inc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zúñiga LA, Jain R, Haines C, Cua DJ. Th17 cell development: from the cradle to the grave. Immunol Rev. 2013;252(1):78–88.

    Article  PubMed  CAS  Google Scholar 

  33. McDonald DR. TH17 deficiency in human disease. J Allergy Clin Immunol. 2012;129(6):1429–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wolk K, Witte K, Witte E, Raftery M, Kokolakis G, Philipp S, et al. IL-29 is produced by TH17 cells and mediates the cutaneous antiviral competence in psoriasis. Sci Transl Med. 2013;5(204):204ra129–9.

    Article  PubMed  CAS  Google Scholar 

  35. Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A. CD301b+ dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity. 2013;39(4):733–43.

    Article  CAS  PubMed  Google Scholar 

  36. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limón P, Weinstein JS, et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013;39(4):722–32. Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS, Hrusch CL, et al. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat Commun. 2013;20:4.

    Google Scholar 

  38. Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194(6):769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Probst HC, Lagnel J, Kollias G, van den Broek M. Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity. 2003;18(5):713–20.

    Article  CAS  PubMed  Google Scholar 

  41. Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nat Immunol. 2005;6(3):280–6. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  42. Schildknecht A, Brauer S, Brenner C, Lahl K, Schild H, Sparwasser T, et al. FoxP3+ regulatory T cells essentially contribute to peripheral CD8+ T-cell tolerance induced by steady-state dendritic cells. Proc Natl Acad Sci U S A. 2010;107(1):199–203.

    Article  CAS  PubMed  Google Scholar 

  43. Jiang A, Bloom O, Ono S, Cui W, Unternaehrer J, Jiang S, et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity. 2007;27(4):610–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Manicassamy S, Reizis B, Ravindran R, Nakaya H, Salazar-Gonzalez RM, Wang YC, et al. Activation of -Catenin in cendritic cells regulates immunity versus tolerance in the intestine. Science. 2010;329(5993):849–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou L, Lopes JE, Chong MMW, Ivanov II, Min R, Victora GD, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453(7192):236–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-beta1 maintains suppressor function and Foxp3 expression in CD4 + CD25+ regulatory T cells. J Exp Med. 2005;201(7):1061–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hill JA, Hall JA, Sun C-M, Cai Q, Ghyselinck N, Chambon P, et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4 + CD44hi Cells. Immunity. 2008;29(5):758–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Darrasse-Jeze G, Deroubaix S, Mouquet H, Victora GD, Eisenreich T, Yao K-H, et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J Exp Med. 2009;206(9):1853–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winter S, Rehm A, Wichner K, Scheel T, Batra A, Siegmund B, et al. Manifestation of spontaneous and early autoimmune gastritis in CCR7-deficient mice. Am J Pathol Am Soc Invest Pathol. 2011;179(2):754–65.

    CAS  Google Scholar 

  50. Wu H, Rodgers JR, Perrard XYD, Perrard JL, Prince JE, Abe Y, et al. Deficiency of CD11b or CD11d results in reduced staphylococcal enterotoxin-induced T cell response and T Cell phenotypic changes. J Immunol. 2004;173(1):297–306.

    Article  CAS  PubMed  Google Scholar 

  51. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article  CAS  PubMed  Google Scholar 

  52. Jojic V, Shay T, Sylvia K, Zuk O, Sun X, Kang J, et al. Identification of transcriptional regulators in the mouse immune system. Nat Immunol. 2013;14(6):633–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Satpathy AT, Kaac W, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D, Murphy TL, Murphy KM. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med. 2012;209(6):1135. The Rockefeller University Press.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P, et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med. 2012;209(6):1153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood. 2000;95(11):3489–97.

    CAS  PubMed  Google Scholar 

  56. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996;184(5):1953–62.

    Article  CAS  PubMed  Google Scholar 

  57. Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, et al. Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science. 2008;322(5904):1097–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edelson BT, KC W, Juang R, Kohyama M, Benoit LA, Klekotka PA, et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha + conventional dendritic cells. J Exp Med. 2010;207(4):823–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jaiswal H, Kaushik M, Sougrat R, Gupta M, Dey A, Verma R, et al. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8 + dendritic cell development. J Immunol. 2013;191(12):5993–6001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, Merad M, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9(6):676–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vremec D, Shortman K. Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J Immunol. 1997;159(2):565–73.

    CAS  PubMed  Google Scholar 

  62. Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev. 2010;234(1):18–31.

    Article  CAS  PubMed  Google Scholar 

  63. Henri S, Vremec D, Kamath A, Waithman J, Williams S, Benoist C, et al. The dendritic cell populations of mouse lymph nodes. J Immunol. 2001;167(2):741–8.

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki S, Honma K, Matsuyama T, Suzuki K, Toriyama K, Akitoyo I, et al. Critical roles of interferon regulatory factor 4 in CD11bhighCD8alpha- dendritic cell development. Proc Natl Acad Sci U S A. 2004;101(24):8981–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miller JC, Brown BD, Shay T, Gautier EL, Jojic V, Cohain A, et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol. 2012;13(9):888–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Greter M, Helft J, Chow A, Hashimoto D, Mortha A, Agudo-Cantero J, et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity. 2012;36(6):1031–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhan Y, Carrington EM, van Nieuwenhuijze A, Bedoui S, Seah S, Xu Y, et al. GM-CSF increases cross-presentation and CD103 expression by mouse CD8+ spleen dendritic cells. Eur J Immunol. 2011;41(9):2585–95.

    Article  CAS  PubMed  Google Scholar 

  68. Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med. 2010;207(1):189–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343(6178):1249288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, et al. Conventional and monocyte-derived CD11b + dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity. 2013;38(2):322–35.

    Article  CAS  PubMed  Google Scholar 

  71. Valladeau J, Ravel O, Dezutter-Dambuyant C, Moore K, Kleijmeer M, Liu Y, et al. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck Granules. Immunity. 2000;12(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  72. Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol. 2008;8(12):935–47.

    Article  CAS  PubMed  Google Scholar 

  73. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.

    Article  CAS  PubMed  Google Scholar 

  74. Hoeffel G, Wang Y, Greter M, See P, Teo P, Malleret B, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med. 2012;209(6):1167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin H, Lee E, Hestir K, Leo C, Huang M, Bosch E, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008;320(5877):807–11.

    Article  CAS  PubMed  Google Scholar 

  76. Wang Y, Szretter KJ, Vermi W, Gilfillan S, Rossini C, Cella M, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13(8):753–60. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Greter M, Lelios I, Pelczar P, Hoeffel G, Price J, Leboeuf M, et al. Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. Immunity. 2012;37(6):1050–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med. 2009;206(13):3115–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fainaru O, Woolf E, Lotem J, Yarmus M, Brenner O, Goldenberg D, et al. Runx3 regulates mouse TGF-beta-mediated dendritic cell function and its absence results in airway inflammation. EMBO J. 2004;23(4):969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hacker C, Kirsch RD, Ju X-S, Hieronymus T, Gust TC, Kuhl C, et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol. 2003;4(4):380–6.

    Article  CAS  PubMed  Google Scholar 

  81. Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, et al. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 2013;210(12):2597–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kaplan DH, Li MO, Jenison MC, Shlomchik WD, Flavell RA, Shlomchik MJ. Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells. J Exp Med. 2007;204(11):2545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kel JM, Girard-Madoux MJH, Reizis B, Clausen BE. TGF-beta is required to maintain the pool of immature Langerhans cells in the epidermis. J Immunol. 2010;185(6):3248–55.

    Article  CAS  PubMed  Google Scholar 

  84. Bobr A, Igyártó BZ, Haley KM, Li MO, Flavell RA, Kaplan DH. Autocrine/paracrine TGF-β1 inhibits Langerhans cell migration. Proc Natl Acad Sci U S A. 2012;109(26):10492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Romani N, Schuler G, Fritsch P. Ontogeny of Ia-positive and Thy-1-positive leukocytes of murine epidermis. J Invest Dermatol. 1986;86(2):129–33.

    Article  CAS  PubMed  Google Scholar 

  86. Merad M, Manz MG, Karsunky H, Wagers A, Peters W, Charo I, et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat Immunol. 2002;3(12):1135–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chorro L, Sarde A, Li M, Woollard KJ, Chambon P, Malissen B, et al. Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J Exp Med. 2009;206(13):3089–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chang-Rodriguez S, Hoetzenecker W, Schwärzler C, Biedermann T, Saeland S, Elbe-Bürger A. Fetal and neonatal murine skin harbors Langerhans cell precursors. J Leukoc Biol. 2005;77(3):352–60.

    Article  CAS  PubMed  Google Scholar 

  89. Ghigo C, Mondor I, Jorquera A, Nowak J, Wienert S, Zahner SP, et al. Multicolor fate mapping of Langerhans cell homeostasis. J Exp Med. 2013;210(9):1657–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai X-M, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol. 2006;7(3):265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nagao K, Kobayashi T, Moro K, Ohyama M, Adachi T, Kitashima DY, et al. Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin. Nat Immunol. 2012;13(8):744–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sorg RV, Kögler G, Wernet P. Identification of cord blood dendritic cells as an immature CD11c − population. Blood Am Soc Hematol. 1999;93(7):2302–7.

    CAS  Google Scholar 

  93. Malissen B, Tamoutounour S, Henri S. The origins and functions of dendritic cells and macrophages in the skin. Nat Rev Immunol. 2014;14(6):417–28. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  94. Haniffa M, Shin A, Bigley V, McGovern N, Teo P, See P, et al. Human tissues contain CD141hi cross-presenting dendritic cells with functional homology to mouse CD103+ nonlymphoid dendritic cells. Immunity. 2012;37(1):60–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Romani N, Clausen BE, Stoitzner P. Langerhans cells and more: langerin-expressing dendritic cell subsets in the skin. Immunol Rev. 2010;234(1):120–41. Europe PMC Funders.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bedoui S, Whitney PG, Waithman J, Eidsmo L, Wakim L, Caminschi I, et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat Immunol. 2009;10(5):488–95.

    Article  CAS  PubMed  Google Scholar 

  97. Belz GT, Shortman K, Bevan MJ, Heath WR. CD8alpha + dendritic cells selectively present MHC class I-restricted noncytolytic viral and intracellular bacterial antigens in vivo. J Immunol. 2005;175(1):196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Belz GT, Smith CM, Kleinert L, Reading P, Brooks A, Shortman K, et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc Natl Acad Sci U S A. 2004;101(23):8670–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Iyoda T. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med. 2002;195(10):1289–302. The Rockefeller University Press.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12(8):557–69.

    Article  CAS  PubMed  Google Scholar 

  101. Igyártó BZ, Haley K, Ortner D, Bobr A, Gerami-Nejad M, Edelson BT, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity. 2011;35(2):260–72.

    Article  PubMed  CAS  Google Scholar 

  102. Vander Lugt B, Khan AA, Hackney JA, Agrawal S, Lesch J, Zhou M, et al. Transcriptional programming of dendritic cells for enhanced MHC class II antigen presentation. Nat Immunol. 2013;15(2):161–7. Nature Publishing Group.

    Article  PubMed  CAS  Google Scholar 

  103. Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315(5808):107–11.

    Article  CAS  PubMed  Google Scholar 

  104. Schiavoni G, Mattei F, Sestili P, Borghi P, Venditti M, Morse HC, et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8alpha(+) dendritic cells. J Exp Med. 2002;196(11):1415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A, Güttler S, et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity. 2009;31(5):823–33.

    Article  CAS  PubMed  Google Scholar 

  106. Helft J, Manicassamy B, Guermonprez P, Hashimoto D, Silvin A, Agudo J, Brown BD, Schmolke M, Miller JC, Leboeuf M, Murphy KM, García-Sastre A, Merad M. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J Clin Invest Am Soc Clin Invest. 2012;122(11):4037.

    Article  CAS  Google Scholar 

  107. Bachy V, Hervouet C, Becker PD, Chorro L, Carlin LM, Herath S, et al. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A. 2013;110(8):3041–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim TS, Gorski SA, Hahn S, Murphy KM, Braciale TJ. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8(+) T cell differentiation by a CD24-dependent mechanism. Immunity. 2014;40(3):400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nizza ST, Campbell JJ. CD11b+ migratory dendritic cells mediate CD8 T cell cross-priming and cutaneous imprinting after topical immunization. PLoS One. 2014;9(3):e91054. Public Library of Science.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Lee HK, Zamora M, Linehan MM, Iijima N, Gonzalez D, Haberman A, et al. Differential roles of migratory and resident DCs in T cell priming after mucosal or skin HSV-1 infection. J Exp Med. 2009;206(2):359–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Igyártó BZ, Kaplan DH. Antigen presentation by Langerhans cells. Curr Opin Immunol. 2013;25(1):115–9.

    Article  PubMed  CAS  Google Scholar 

  112. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207(6):1247–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chu C-C, Ali N, Karagiannis P, Di Meglio P, Skowera A, Napolitano L, et al. Resident CD141 (BDCA3) + dendritic cells in human skin produce IL-10 and induce regulatory T cells that suppress skin inflammation. J Exp Med. 2012;209(5):935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kaplan DH, Igyártó BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12(2):114–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Förster R, Schubel A, Breitfeld D, Kremmer E, Renner-Müller I, Wolf E, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell. 1999;99(1):23–33. Elsevier.

    Article  PubMed  Google Scholar 

  116. Itano AA, McSorley SJ, Reinhardt RL, Ehst BD, Ingulli E, Rudensky AY, et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity. 2003;19(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  117. Allenspach EJ, Lemos MP, Porrett PM, Turka LA, Laufer TM. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity. 2008;29(5):795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity. 2004;21(2):279–88.

    Article  CAS  PubMed  Google Scholar 

  119. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity. 2005;23(6):611–20.

    Article  CAS  PubMed  Google Scholar 

  120. Bobr A, Olvera-Gomez I, Igyártó BZ, Haley KM, Hogquist KA, Kaplan DH. Acute ablation of Langerhans cells enhances skin immune responses. J Immunol. 2010;185(8):4724–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Igyártó BZ, Jenison MC, Dudda JC, Roers A, Müller W, Koni PA, et al. Langerhans cells suppress contact hypersensitivity responses via cognate CD4 interaction and langerhans cell-derived IL-10. J Immunol. 2009;183(8):5085–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. de Agüero MG, Vocanson M, Hacini-Rachinel F, Taillardet M, Sparwasser T, Kissenpfennig A, et al. Langerhans cells protect from allergic contact dermatitis in mice by tolerizing CD8+ T cells and activating Foxp3+ regulatory T cells. J Clin Invest Am Soc Clin Invest. 2012;122(5):1700–11.

    Article  CAS  Google Scholar 

  123. Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, et al. Identification of a novel population of Langerin + dendritic cells. J Exp Med. 2007;204(13):3147–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang L, Bursch LS, Kissenpfennig A, Malissen B, Jameson SC, Hogquist KA. Langerin expressing cells promote skin immune responses under defined conditions. J Immunol. 2008;180(7):4722–7.

    Article  CAS  PubMed  Google Scholar 

  125. Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol. 2005;169(4):569–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Honda T, Nakajima S, Egawa G, Ogasawara K, Malissen B, Miyachi Y, et al. Compensatory role of Langerhans cells and langerin-positive dermal dendritic cells in the sensitization phase of murine contact hypersensitivity. J Allergy Clin Immunol. 2010;125(5):1154–1156.e2.

    Article  PubMed  Google Scholar 

  127. Noordegraaf M, Flacher V, Stoitzner P, Clausen BE. Functional redundancy of Langerhans cells and Langerin + dermal dendritic cells in contact hypersensitivity. J Invest Dermatol. 2010;130(12):2752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kumamoto Y, Denda-Nagai K, Aida S, Higashi N, Irimura T. MGL2+ Dermal dendritic cells are sufficient to initiate contact hypersensitivity in vivo. PLoS One. 2009;4(5):e5619EP. Public Library of Science.

    Article  CAS  Google Scholar 

  129. Bell BD, Kitajima M, Larson RP, Stoklasek TA, Dang K, Sakamoto K, et al. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat Immunol. 2013;14(4):364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kitajima M, Ziegler SF. Cutting edge: identification of the thymic stromal lymphopoietin-responsive dendritic cell subset critical for initiation of type 2 contact hypersensitivity. J Immunol. 2013;11:4903–7.

    Article  CAS  Google Scholar 

  131. Nakajima S, Igyártó BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129(4):1048–55.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, et al. Repetitive injections of dendritic cells matured with tumor necrosis factor induce antigen-specific protection of mice from autoimmunity. J Exp Med. 2002;195(1):15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ohnmacht C, Pullner A, King SBS, Drexler I, Meier S, Brocker T, et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J Exp Med. 2009;206(3):549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Birnberg T, Bar-On L, Sapoznikov A, Caton ML, Cervantes-Barragán L, Makia D, et al. Lack of conventional dendritic cells is compatible with normal development and T Cell homeostasis, but causes myeloid proliferative syndrome. Immunity. 2008;29(6):986–97.

    Article  CAS  PubMed  Google Scholar 

  135. Joffre OP, Sancho D, Zelenay S, Keller AM, Reis e Sousa C. Efficient and versatile manipulation of the peripheral CD4+ T-cell compartment by antigen targeting to DNGR-1/CLEC9A. Eur J Immunol. 2010;40(5):1255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kawamura T, Ogawa Y, Nakamura Y, Nakamizo S, Ohta Y, Nakano H, et al. Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J Clin Invest Am Soc Clin Invest. 2012;122(2):722–32.

    Article  CAS  Google Scholar 

  137. Obhrai JS, Oberbarnscheidt M, Zhang N, Mueller DL, Shlomchik WD, Lakkis FG, et al. Langerhans cells are not required for efficient skin graft rejection. J Invest Dermatol. 2008;128(8):1950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, et al. Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med. 2011;208(5):885–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, et al. Epidermal RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med. 2006;12(12):1372–9. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  140. Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P, Devilard E, et al. Skin-draining lymph nodes contain dermis-derived CD103- dendritic cells that constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood. 2010;115(10):1958–68.

    Article  CAS  PubMed  Google Scholar 

  141. Nolting J, Daniel C, Reuter S, Stuelten C, Li P, Sucov H, et al. Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. J Exp Med. 2009;206(10):2131–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Mucida D, Pino-Lagos K, Kim G, Nowak E, Benson MJ, Kronenberg M, et al. Retinoic acid can directly promote TGF-β-Mediated Foxp3+ Treg cell conversion of naive T cells. Immunity. 2009;30(4):471–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Belkaid Y, Oldenhove G. Tuning microenvironments: induction of regulatory T cells by dendritic cells. Immunity. 2008;29(3):362–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, et al. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest. 2013;123(2):844–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ouchi T, Kubo A, Yokouchi M, Adachi T, Kobayashi T, Kitashima DY, et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med. 2011;208(13):2607–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Park HY, Light A, Lahoud MH, Caminschi I, Tarlinton DM, Shortman K. Evolution of B cell responses to Clec9A-targeted antigen. J Immunol. 2013;11:4919–25.

    Article  CAS  Google Scholar 

  147. Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee CN, et al. Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J Immunol. 2011;187(2):842–50.

    Article  CAS  PubMed  Google Scholar 

  148. Tamoutounour S, Guilliams M, Montanana Sanchis F, Liu H, Terhorst D, Malosse C, et al. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity. 2013;39(5):925–38. Elsevier.

    Article  CAS  PubMed  Google Scholar 

  149. Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, Tikoo S, et al. Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol. 2014;15(1):45–53.

    Article  CAS  PubMed  Google Scholar 

  150. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330(6005):841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.

    Article  CAS  PubMed  Google Scholar 

  152. Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, et al. SuperSAGE evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011;118(12):e50–61.

    Article  CAS  PubMed  Google Scholar 

  153. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  154. Schäkel K, von Kietzell M, Hänsel A, Ebling A, Schulze L, Haase M, et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes. Immunity. 2006;24(6):767–77.

    Article  PubMed  CAS  Google Scholar 

  155. Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity. 2013;39(3):599–610.

    Article  CAS  PubMed  Google Scholar 

  156. Cros J, Cagnard N, Woollard K, Patey N, Zhang S-Y, Senechal B, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7 and TLR8 receptors. Immunity. 2010;33(3):375–86. Elsevier.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Randolph GJ, Ochando J, Partida-Sánchez S. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol. 2008;26:293–316.

    Article  CAS  PubMed  Google Scholar 

  158. Lowes MA, Chamian F, Abello MV, Fuentes-Duculan J, Lin SL, Nussbaum R, et al. Increase in TNF- and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci U S A. 2005;102(52):19057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Reizis B. Regulation of plasmacytoid dendritic cell development. Curr Opin Immunol. 2010;22(2):206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol. 2011;29:163–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ganguly D, Haak S, Sisirak V, Reizis B. The role of dendritic cells in autoimmunity. Nat Rev Immunol. 2013;13(8):566–77. Nature Publishing Group.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Nestle FO, Conrad C, Tun-Kyi A, Homey B, Gombert M, Boyman O, et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J Exp Med. 2005;202(1):135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Chan VS-F, Nie Y-J, Shen N, Yan S, Mok M-Y, Lau C-S. Distinct roles of myeloid and plasmacytoid dendritic cells in systemic lupus erythematosus. Autoimmun Rev. 2012;11(12):890–7.

    Article  CAS  PubMed  Google Scholar 

  164. Dickinson RE, Milne P, Jardine L, Zandi S, Swierczek SI, McGovern N, et al. The evolution of cellular deficiency in GATA2 mutation. Blood. 2014;123(6):863–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Emile JF, Geissmann F, Martin OC, Radford-Weiss I, Lepelletier Y, Heymer B, et al. Langerhans cell deficiency in reticular dysgenesis. Blood. 2000;96(1):58–62.

    CAS  PubMed  Google Scholar 

  167. Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol (Ann Rev). 2014;32(1):227–55.

    Article  CAS  Google Scholar 

  168. Flutter B, Nestle FO. TLRs to cytokines: mechanistic insights from the imiquimod mouse model of psoriasis. Eur J Immunol. 2013;43(12):3138–46.

    Article  CAS  PubMed  Google Scholar 

  169. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J Clin Invest Am Soc Clin Invest. 2012;122(6):2252–6.

    Article  CAS  Google Scholar 

  170. Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity. 2011;35(4):596–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. van der Fits L, Mourits S, Voerman JSA, Kant M, Boon L, Laman JD, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182(9):5836–45.

    Article  PubMed  CAS  Google Scholar 

  172. Yoshiki R, Kabashima K, Honda T, Nakamizo S, Sawada Y, Sugita K, et al. IL-23 from Langerhans cells is required for the development of imiquimod-induced psoriasis-like dermatitis by induction of IL-17A-Producing γδ T cells. J Invest Dermatol. 2014;134(7):1912–21. Nature Publishing Group.

    Article  CAS  PubMed  Google Scholar 

  173. Tortola L, Rosenwald E, Abel B, Blumberg H, Schäfer M, Coyle AJ, et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J Clin Invest. 2012;122(11):3965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wohn C, Ober-Blöbaum JL, Haak S, Pantelyushin S, Cheong C, Zahner SP, et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A. 2013;110(26):10723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A, Alvarez D, et al. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature. 2014;510(7503):157–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ostrowski SM, Belkadi A, Loyd CM, Diaconu D, Ward NL. Cutaneous denervation of psoriasiform mouse skin improves acanthosis and inflammation in a sensory neuropeptide-dependent manner. J Invest Dermatol. 2011;131(7):1530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Millar JD, Roberto RR, Wulff H, Wenner HA, Henderson DA. Smallpox vaccination by intradermal jet injection. I. Introduction, background and results of pilot studies. Bull World Health Organ. 1969;41(6):749–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Sullivan SP, Koutsonanos DG, Del Pilar MM, Lee JW, Zarnitsyn V, Choi S-O, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med. 2010;16(8):915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Weiss R, Hessenberger M, Kitzmüller S, Bach D, Weinberger EE, Krautgartner WD, et al. Transcutaneous vaccination via laser microporation. J Control Release. 2012;162(2):391–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.

    Article  CAS  PubMed  Google Scholar 

  181. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Kaplan MD, PhD .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    Identify the two major subsets of dendritic cells found throughout the secondary lymphoid tissues (select all correct answers).

    1. a.

      IRF8 DC

    2. b.

      Langerhans Cells

    3. c.

      CD103+ dDC

    4. d.

      IRF4 DC

    5. e.

      CD11b + dDC

  • Correct answer: a and d. Classical DCs (broad category of LN/splenic resident DCs) can be broadly categorized into two distinct subsets by the expression of transcriptional factors IRF4 and IRF8. IRF8 cDCs express CD8, XCR1 and Clec9a while IRF4 cDCs express CD11b and CD172. These 2 DC types are found in lymph node, spleen and have closely related counterparts in most peripheral tissues. Skin DCs can be categorized into three broad categories: Langerhans cells, CD11b+ dDCs, and CD103+ dDCs

  1. 2.

    How are dendritic cells activated (select all correct answers)?

    1. a.

      PAMPS

    2. b.

      Cytokines

    3. c.

      Stochastically

    4. d.

      Antigen

    5. e.

      B-catenin

  • Correct answer: a and b. Skin DCs get activated through their pattern recognition receptors (e.g. TLR) as well as by inflammatory cytokines. This results in expression of CCR7 that facilitiates migration into LN and increased expression of MHC-II and co-stimulatory molecules (e.g. B7) that allow for efficient activation of cognate CD4+ and CD8+ T cells

  1. 3.

    What is the function of skin dendritic cells under steady-state conditions (select all correct answers)?

    1. a.

      T cell activation

    2. b.

      Clean-up necrotic debris

    3. c.

      B cell activation

    4. d.

      Inhibition of Mast cell activation

    5. e.

      T cell tolerance

  • Correct answer: e. Steady state DCs mediate tolerance to self antigens through a mechanism involving b-catenin as well as other likely mechanisms

  1. 4.

    What role do dendritic cells play during allergic contact dermatitis, Psoriasis and during infection (select all correct answers)?

    1. a.

      Activate T cells specific for foreign antigens

    2. b.

      Secrete IL-23

    3. c.

      Secrete IL-15

    4. d.

      Induce Th17 responses

    5. e.

      Induce Th2 responses

  • Correct answer: a,b,c,d,e. The precise role of individual DC subsets during allergic contact dermatitis remains unclear. Some studies demonstrate that LCs suppress CHS and DTH while others show that LCs induce CHS and DTH responses. Similarly, the data is also controversial for CD103+ and CD11b+ dDCs. For Psoriasis, mice in which DCs are conditionally depleted have less response in imiquimod induced psoriasis inflammation model. TLR signaling on CD11b+ dDCs have recently been demonstrated to be sufficient in inducing IL-23 in response to imiquimod to drive psoriasis like inflammation in mice. Fo infection, In response to C. albicans, L. major and West Nile virus infections, CD103+ dDCs mediate Th1 responses. LCs mediate Th17 responses in response to epicutaneous C. albicans infection. Finally, CD11b+ dDCs induce Th2 responses to N. brasiliensis infection

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kashem, S.W., Kaplan, D.H. (2017). Cutaneous Dendritic Cells in Health and Disease. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics