Skip to main content

Innate Lymphoid Cells in the Skin

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

The skin forms the body’s primary interface with the environment and, as such, is equipped with a network of immune cells to provide the first line of defense against infection and injury. Recently, a new family of lymphocyte-like immune cells has been described that does not express rearranged antigen receptors. These cells have been termed innate lymphoid cells (ILC), and comprise several subsets that are defined by the expression of certain transcription factors and cytokines. Emerging evidence has implicated ILC in the pathogenesis of inflammatory and neoplastic skin diseases. Here, we review the biology of ILC and their role in skin pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aujla SJ, Kolls JK. IL-22: a critical mediator in mucosal host defense. J Mol Med (Berl). 2009;87(5):451–4. doi:10.1007/s00109-009-0448-1.

    Article  CAS  Google Scholar 

  2. Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, McKenzie AN. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allerg Clin Immunol. 2012;129(1):191–8.e1–4. S0091-6749(11)01565-X [pii]. doi:10.1016/j.jaci.2011.09.041.

  3. Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA, Kazani S, Wechsler ME, Israel E, Levy BD. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med. 2013;5(174):174ra126. 5/174/174ra26 [pii]. doi:10.1126/scitranslmed.3004812.

  4. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. IL-33-responsive lineage- CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol. 2012;188(3):1503–13. doi:10.4049/jimmunol.1102832.

    Article  CAS  PubMed  Google Scholar 

  5. Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, Szentpetery A, Smith M, Thomas R, Gaston H. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15(5):R136. doi:10.1186/ar4317.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ, Bemelman WA, Mjosberg JM, Spits H. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 2013;14(3):221–9. doi:10.1038/ni.2534.

    Article  CAS  PubMed  Google Scholar 

  7. Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ, Powrie F. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 2010;464(7293):1371–5. doi:10.1038/nature08949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cameron AL, Kirby B, Fei W, Griffiths CE. Natural killer and natural killer-T cells in psoriasis. Arch Dermatol Res. 2002;294(8):363–9. doi:10.1007/s00403-002-0349-4.

    CAS  PubMed  Google Scholar 

  9. Carotta S, Pang SH, Nutt SL, Belz GT. Identification of the earliest NK-cell precursor in the mouse BM. Blood. 2011;117(20):5449–52. doi:10.1182/blood-2010-11-318956.

    Article  CAS  PubMed  Google Scholar 

  10. Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC, Colonna M. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 2009;457(7230):722–5. nature07537 [pii]. doi:10.1038/nature07537.

  11. Cherrier M, Sawa S, Eberl G. Notch, Id2, and RORgammat sequentially orchestrate the fetal development of lymphoid tissue inducer cells. J Exp Med. 2012;209(4):729–40. doi:10.1084/jem.20111594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature. 2014;508(7496):397–401. nature13047 [pii]. doi:10.1038/nature13047.

  13. Cooper MA, Fehniger TA, Fuchs A, Colonna M, Caligiuri MA. NK cell and DC interactions. Trends Immunol. 2004;25(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  14. Crellin NK, Trifari S, Kaplan CD, Cupedo T, Spits H. Human NKp44+ IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J Exp Med. 2010;207(2):281–90. jem.20091509 [pii]. doi:10.1084/jem.20091509.

  15. Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA, Marvel J, Yoh K, Takahashi S, Prinz I, de Bernard S, Buffat L, Walzer T. T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med. 2014;211(3):563–77. doi:10.1084/jem.20131560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol. 2009;129(6):1339–50. doi:10.1038/jid.2009.59.

    Article  PubMed  Google Scholar 

  17. Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J Allergy Clin Immunol. 2013;132(1):205–13. doi:10.1016/j.jaci.2013.03.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dyring-Andersen B, Geisler C, Agerbeck C, Lauritsen JP, Gudjonsdottir SD, Skov L, Bonefeld CM. Increased number and frequency of group 3 innate lymphoid cells in nonlesional psoriatic skin. Br J Dermatol. 2014;170(3):609–16. doi:10.1111/bjd.12658.

    Article  CAS  PubMed  Google Scholar 

  19. Eyerich K, Novak N. Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy. 2013;68(8):974–82. doi:10.1111/all.12184.

    Article  CAS  PubMed  Google Scholar 

  20. Fallon PG, Ballantyne SJ, Mangan NE, Barlow JL, Dasvarma A, Hewett DR, McIlgorm A, Jolin HE, McKenzie AN. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med. 2006;203(4):1105–16. doi:10.1084/jem.20051615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst SD, Zurawski G, Leach MW, Gorman DM, Rennick DM. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity. 2001;15(6):985–95.

    Article  CAS  PubMed  Google Scholar 

  22. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013;38(4):769–81. doi:10.1016/j.immuni.2013.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furusawa J, Moro K, Motomura Y, Okamoto K, Zhu J, Takayanagi H, Kubo M, Koyasu S. Critical role of p38 and GATA3 in natural helper cell function. J Immunol. 2013;191(4):1818–26. jimmunol.1300379 [pii]. doi:10.4049/jimmunol.1300379.

  24. Geremia A, Arancibia-Carcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP, Powrie F. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208(6):1127–33. jem.20101712 [pii]. doi:10.1084/jem.20101712.

  25. Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013;190(2):521–5. doi:10.4049/jimmunol.1202924.

    Article  CAS  PubMed  Google Scholar 

  26. Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC, Lindsten T, Reiner SL. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity. 2012;36(1):55–67. S1074-7613(12)00005-2 [pii]. doi:10.1016/j.immuni.2011.11.016.

  27. Gottlieb AB, Chamian F, Masud S, Cardinale I, Abello MV, Lowes MA, Chen F, Magliocco M, Krueger JG. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 2005;175(4):2721–9. 175/4/2721 [pii].

    Google Scholar 

  28. Halim TY, Krauss RH, Sun AC, Takei F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity. 2012;36(3):451–63. doi:10.1016/j.immuni.2011.12.020.

    Article  CAS  PubMed  Google Scholar 

  29. Halim TY, MacLaren A, Romanish MT, Gold MJ, McNagny KM, Takei F. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity. 2012;37(3):463–74. doi:10.1016/j.immuni.2012.06.012.

    Article  CAS  PubMed  Google Scholar 

  30. Harper EG, Guo C, Rizzo H, Lillis JV, Kurtz SE, Skorcheva I, Purdy D, Fitch E, Iordanov M, Blauvelt A. Th17 cytokines stimulate CCL20 expression in keratinocytes in vitro and in vivo: implications for psoriasis pathogenesis. J Invest Dermatol. 2009;129(9):2175–83. doi:10.1038/jid.2009.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hazenberg MD, Spits H. Human innate lymphoid cells. Blood. 2014;124(5):700–9. blood-2013-11-427781 [pii]. doi:10.1182/blood-2013-11-427781.

  32. Hedrick MN, Lonsdorf AS, Shirakawa AK, Richard Lee CC, Liao F, Singh SP, Zhang HH, Grinberg A, Love PE, Hwang ST, Farber JM. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J Clin Invest. 2009;119(8):2317–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S, Sinha R, Mantegazza AR, Ma HL, Crawford A, Angelosanto JM, Wherry EJ, Koni PA, Bushman FD, Elson CO, Eberl G, Artis D, Sonnenberg GF. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498(7452):113–7. nature12240 [pii]. doi:10.1038/nature12240.

  34. Hoorweg K, Peters CP, Cornelissen F, Aparicio-Domingo P, Papazian N, Kazemier G, Mjosberg JM, Spits H, Cupedo T. Functional differences between human NKp44(−) and NKp44(+) RORC(+) innate lymphoid cells. Front Immunol. 2012;3:72. doi:10.3389/fimmu.2012.00072.

  35. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity. 2012;37(4):634–48. doi:10.1016/j.immuni.2012.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huntington ND, Nutt SL, Carotta S. Regulation of murine natural killer cell commitment. Front Immunol. 2013;4:14. doi:10.3389/fimmu.2013.00014.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, Nakanishi K, Yamanishi K. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A. 2013;110(34):13921–6. doi:10.1073/pnas.1307321110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27. doi:10.1056/NEJMra1011040.

    Article  CAS  PubMed  Google Scholar 

  39. Kagami S, Rizzo HL, Lee JJ, Koguchi Y, Blauvelt A. Circulating Th17, Th22, and Th1 cells are increased in psoriasis. J Invest Dermatol. 2010;130(5):1373–83. doi:10.1038/jid.2009.399.

    Article  CAS  PubMed  Google Scholar 

  40. Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, Hepworth MR, Van Voorhees AS, Comeau MR, Artis D. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5(170):170ra116. doi:10.1126/scitranslmed.3005374.

  41. Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, Savage PB, McKenzie AN, Smith DE, Rottman JB, DeKruyff RH, Umetsu DT. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allerg Clin Immunol. 2012;129(1):216–27.e1–6. doi:10.1016/j.jaci.2011.10.036.

  42. Klein Wolterink RG, Kleinjan A, van Nimwegen M, Bergen I, de Bruijn M, Levani Y, Hendriks RW. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur J Immunol. 2012;42(5):1106–16. doi:10.1002/eji.201142018.

    Article  PubMed  Google Scholar 

  43. Klein Wolterink RG, Serafini N, van Nimwegen M, Vosshenrich CA, de Bruijn MJ, Fonseca Pereira D, Veiga Fernandes H, Hendriks RW, Di Santo JP. Essential, dose-dependent role for the transcription factor Gata3 in the development of IL-5+ and IL-13+ type 2 innate lymphoid cells. Proc Natl Acad Sci USA. 2013;110(25):10240–5. 1217158110 [pii]. doi:10.1073/pnas.1217158110.

  44. Klose CS, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157(2):340–56. doi:10.1016/j.cell.2014.03.030.

    Article  CAS  PubMed  Google Scholar 

  45. Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, Goppert N, Croxford AL, Waisman A, Tanriver Y, Diefenbach A. A T-bet gradient controls the fate and function of CCR6-RORgammat+innate lymphoid cells. Nature. 2013;494(7436):261–5. doi:10.1038/nature11813.

    Article  CAS  PubMed  Google Scholar 

  46. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 9(5):495–502. doi:10.1038/ni1581. doi:10.1038/nri2276.

  47. Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, Chamian F, Dhodapkar M, Krueger JG. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199(1):125–30. doi:10.1084/jem.20030451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leonardi CL, Kimball AB, Papp KA, Yeilding N, Guzzo C, Wang Y, Li S, Dooley LT, Gordon KB. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet. 2008;371(9625):1665–74. doi:10.1016/S0140-6736(08)60725-4.

    Article  CAS  PubMed  Google Scholar 

  49. Luci C, Gaudy-Marqueste C, Rouzaire P, Audonnet S, Cognet C, Hennino A, Nicolas JF, Grob JJ, Tomasello E. Peripheral natural killer cells exhibit qualitative and quantitative changes in patients with psoriasis and atopic dermatitis. Br J Dermatol. 2012;166(4):789–96. doi:10.1111/j.1365-2133.2012.10814.x.

    Article  CAS  PubMed  Google Scholar 

  50. Luci C, Reynders A, Ivanov, II, Cognet C, Chiche L, Chasson L, Hardwigsen J, Anguiano E, Banchereau J, Chaussabel D, Dalod M, Littman DR, Vivier E, Tomasello E. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol. 2009;10(1):75–82. ni.1681 [pii]. doi:10.1038/ni.1681.

  51. Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4 + CD3- LTbeta + cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 1997;7(4):493–504. S1074-7613(00)80371-4 [pii].

    Article  CAS  PubMed  Google Scholar 

  52. Mebius RE, Streeter PR, Michie S, Butcher EC, Weissman IL. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes. Proc Natl Acad Sci U S A. 1996;93(20):11019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC, Cerovic V, Salmond RJ, Liew FY. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J Immunol. 2014;192(5):2442–8. jimmunol.1300974 [pii]. doi:10.4049/jimmunol.1300974.

  54. Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol. 2012;33(8):389–96. S1471-4906(12)00061-0 [pii]. doi:10.1016/j.it.2012.04.005.

  55. Mjosberg J, Bernink J, Golebski K, Karrich JJ, Peters CP, Blom B, te Velde AA, Fokkens WJ, van Drunen CM, Spits H, Peters C. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity. 2012;37(4):649–59.

    Article  PubMed  Google Scholar 

  56. Mjösberg J, Bernink J, Peters C, Spits H. Transcriptional control of innate lymphoid cells. Eur J Immunol. 2012;42(8):1916–23. doi: 10.1002/eji.201242639. Review. PubMed PMID: 22865043.

  57. Mjosberg J, Bernink J, Peters C, Spits H. Transcriptional control of innate lymphoid cells. Eur J Immunol. 2012;42(8):1916–23. doi:10.1002/eji.201242639.

    Article  PubMed  Google Scholar 

  58. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, Fokkens WJ, Cupedo T, Spits H. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12(11):1055–62. doi:10.1038/ni.2104.

    Article  PubMed  Google Scholar 

  59. Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12(11):1045–54. doi:10.1031/ni.2131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463(7280):540–4. doi:10.1038/nature08636.

    Article  CAS  PubMed  Google Scholar 

  61. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–70. doi:10.1038/nature08900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496–509. doi:10.1056/NEJMra0804595.

    Article  CAS  PubMed  Google Scholar 

  63. Ottaviani C, Nasorri F, Bedini C, de Pita O, Girolomoni G, Cavani A. CD56brightCD16(−) NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur J Immunol. 2006;36(1):118–28. doi:10.1002/eji.200535243.

    Article  CAS  PubMed  Google Scholar 

  64. Pantelyushin S, Haak S, Ingold B, Kulig P, Heppner FL, Navarini AA, Becher B. Rorgammat+innate lymphocytes and gammadelta T cells initiate psoriasiform plaque formation in mice. J Clin Invest. 2012;122(6):2252–6. 61862 [pii]. doi:10.1172/JCI61862.

  65. Papp KA, Langley RG, Lebwohl M, Krueger GG, Szapary P, Yeilding N, Guzzo C, Hsu MC, Wang Y, Li S, Dooley LT, Reich K. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet. 2008;371(9625):1675–84. doi:10.1016/S0140-6736(08)60726-6.

    Article  CAS  PubMed  Google Scholar 

  66. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, Aras G, Li J, Russell CB, Thompson EH, Baumgartner S. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9. doi:10.1056/NEJMoa1109017.

    Article  CAS  PubMed  Google Scholar 

  67. Piskin G, Sylva-Steenland RM, Bos JD, Teunissen MB. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: enhanced expression in psoriatic skin. J Immunol. 2006;176(3):1908–15.

    Article  CAS  PubMed  Google Scholar 

  68. Possot C, Schmutz S, Chea S, Boucontet L, Louise A, Cumano A, Golub R. Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat Immunol. 2011;12(10):949–58. doi:10.1038/ni.2105.

    Article  CAS  PubMed  Google Scholar 

  69. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A. 2010;107(25):11489–94. doi:10.1073/pnas.1003988107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rankin LC, Groom JR, Chopin M, Herold MJ, Walker JA, Mielke LA, McKenzie AN, Carotta S, Nutt SL, Belz GT. The transcription factor T-bet is essential for the development of NKp46+ innate lymphocytes via the Notch pathway. Nat Immunol. 2013;14(4):389–95. doi:10.1038/ni.2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Res PC, Piskin G, de Boer OJ, van der Loos CM, Teeling P, Bos JD, Teunissen MB. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLoS One. 2010;5(11):e14108. doi:10.1371/journal.pone.0014108.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV, Kim BS, Mitchell AJ, Tay SS, Jain R, Forbes-Blom E, Chen X, Tong PL, Bolton HA, Artis D, Paul WE, Fazekas de St Groth B, Grimbaldeston MA, Le Gros G, Weninger W. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat Immunol. 2013;14(6):564–73. doi:10.1038/ni.2584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saenz SA, Siracusa MC, Monticelli LA, Ziegler CG, Kim BS, Brestoff JR, Peterson LW, Wherry EJ, Goldrath AW, Bhandoola A, Artis D. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells. J Exp Med. 2013;210(9):1823–37. doi:10.1084/jem.20122332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, Fallon PG, Ogg GS. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50. doi:10.1084/jem.20130351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanos SL, Bui VL, Mortha A, Oberle K, Heners C, Johner C, Diefenbach A. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immun. 2009;10(1):83–91. ni.1684 [pii]. doi:10.1038/ni.1684.

  76. Satoh-Takayama N, Lesjean-Pottier S, Vieira P, Sawa S, Eberl G, Vosshenrich CA, Di Santo JP. IL-7 and IL-15 independently program the differentiation of intestinal CD3-NKp46+ cell subsets from Id2-dependent precursors. J Exp Med. 2010;207(2):273–80. doi:10.1084/jem.20092029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M, Rattis F, Mention JJ, Thiam K, Cerf-Bensussan N, Mandelboim O, Eberl G, Di Santo JP. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity. 2008;29(6):958–70. doi:10.1016/j.immuni.2008.11.001.

    Article  CAS  PubMed  Google Scholar 

  78. Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G, Lehtimaki S, Karisola P, Reunala T, Wolff H, Lauerma A, Alenius H. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol. 2012;132(5):1392–400. doi:10.1038/jid.2011.446.

    Article  CAS  PubMed  Google Scholar 

  79. Sciume G, Hirahara K, Takahashi H, Laurence A, Villarino AV, Singleton KL, Spencer SP, Wilhelm C, Poholek AC, Vahedi G, Kanno Y, Belkaid Y, O’Shea JJ. Distinct requirements for T-bet in gut innate lymphoid cells. J Exp Med. 2012;209(13):2331–8. doi:10.1084/jem.20122097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. Elife. 2014;3:e01659. doi:10.7554/eLife.01659.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA, Kunisawa J, Shibata N, Grunberg S, Sinha R, Zahm AM, Tardif MR, Sathaliyawala T, Kubota M, Farber DL, Collman RG, Shaked A, Fouser LA, Weiner DB, Tessier PA, Friedman JR, Kiyono H, Bushman FD, Chang KM, Artis D. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science. 2012;336(6086):1321–5. doi:10.1126/science.1222551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sonnenberg GF, Monticelli LA, Elloso MM, Fouser LA, Artis D. CD4(+) lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity. 2011;34(1):122–34. doi:10.1016/j.immuni.2010.12.009.

    Article  CAS  PubMed  Google Scholar 

  83. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A, Smith K, Gorman D, Zurawski S, Abrams J, Menon S, McClanahan T, de Waal-Malefyt RR, Bazan F, Kastelein RA, Liu YJ. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80. doi:10.1038/ni805.

    CAS  PubMed  Google Scholar 

  84. Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, Powrie F, Vivier E. Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13(2):145–9. doi:10.1038/nri3365.

    Article  CAS  PubMed  Google Scholar 

  85. Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30:647–75. doi:10.1146/annurev-immunol-020711-075053.

    Article  CAS  PubMed  Google Scholar 

  86. Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8(+) T cells. Nat Rev Immunol. 2011;11(10):645–57. doi:10.1038/nri3044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tanriver Y, Diefenbach A. Transcription factors controlling development and function of innate lymphoid cells. Int Immunol. 2014;26(3):119–28. dxt063 [pii]. doi:10.1093/intimm/dxt063.

  88. Tausend W, Downing C, Tyring S. Systematic review of interleukin-12, interleukin-17, and interleukin-23 pathway inhibitors for the treatment of moderate-to-severe chronic plaque psoriasis: ustekinumab, briakinumab, tildrakizumab, guselkumab, secukinumab, ixekizumab, and brodalumab. J Cutan Med Surg. 2014;18(3):156–69.

    CAS  PubMed  Google Scholar 

  89. Teunissen MB, Munneke JM, Bernink JH, Spuls PI, Res PC, Te Velde A, Cheuk S, Brouwer MW, Menting SP, Eidsmo L, Spits H, Hazenberg MD, Mjosberg J. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol. 2014;134(9):2351–60. doi:10.1038/jid.2014.146.

    Article  CAS  PubMed  Google Scholar 

  90. Tobin AM, Lynch L, Kirby B, O’Farrelly C. Natural killer cells in psoriasis. J Innate Immun. 2011;3(4):403–10. doi:10.1159/000328011.

    Article  CAS  PubMed  Google Scholar 

  91. Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH. T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity. 2004;20(4):477–94. S1074761304000767 [pii].

    Article  CAS  PubMed  Google Scholar 

  92. Trautmann A, Altznauer F, Akdis M, Simon HU, Disch R, Brocker EB, Blaser K, Akdis CA. The differential fate of cadherins during T-cell-induced keratinocyte apoptosis leads to spongiosis in eczematous dermatitis. J Invest Dermatol. 2001;117(4):927–34. doi:10.1046/j.0022-202x.2001.01474.x.

    Article  CAS  PubMed  Google Scholar 

  93. Van Belle AB, de Heusch M, Lemaire MM, Hendrickx E, Warnier G, Dunussi-Joannopoulos K, Fouser LA, Renauld JC, Dumoutier L. IL-22 is required for imiquimod-induced psoriasiform skin inflammation in mice. J Immunol. 2012;188(1):462–9. jimmunol.1102224 [pii]. doi:10.4049/jimmunol.1102224.

  94. Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol. 2014;134(4):984–91. doi:10.1038/jid.2013.477.

    Article  CAS  PubMed  Google Scholar 

  95. Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Holscher C, Honig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A. Regulated expression of nuclear receptor RORgammat confers distinct functional fates to NK cell receptor-expressing RORgammat(+) innate lymphocytes. Immunity. 2010;33(5):736–51. doi:10.1016/j.immuni.2010.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wolk K, Sabat R. Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev. 2006;17(5):367–80. S1359-6101(06)00050-5 [pii]. doi:10.1016/j.cytogfr.2006.09.001.

  97. Wong SH, Walker JA, Jolin HE, Drynan LF, Hams E, Camelo A, Barlow JL, Neill DR, Panova V, Koch U, Radtke F, Hardman CS, Hwang YY, Fallon PG, McKenzie AN. Transcription factor RORalpha is critical for nuocyte development. Nat Immunol. 2012;13(3):229–36. doi:10.1038/ni.2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN, Spits H, Klenerman P, Ogg G. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014;133(4):1184–94. S0091-6749(13)01771-5 [pii]. doi:10.1016/j.jaci.2013.10.056.

  99. Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, Hu G, Barron L, Sharma S, Nakayama T, Belkaid Y, Zhao K, Zhu J. The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity. 2014;40(3):378–88. S1074-7613(14)00070-3 [pii]. doi:10.1016/j.immuni.2014.01.012.

  100. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature. 1999;397(6721):702–6. doi:10.1038/17812.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Weninger .

Editor information

Editors and Affiliations

Review Questions

Review Questions

  1. 1.

    How does the developmental pathway of NK cells and ILC differ from B cells and T cells?

    1. A.

      Their developmental pathway is identical to B-cells and T-cells

    2. B.

      They lack a rearranged antigen receptor

    3. C.

      Their cell surface markers are different

    4. D.

      Their transcription factors are unique

  • Correct Answer: (B) NK cells and ILC lack rearranged antigen receptors, since they are innate immune cells

  1. 2.

    What are the key subsets of ILC?

    1. A.

      Group 1 ILC (IFN-gamma producing)

    2. B.

      Group 2 ILC (IL-4, IL-5, IL-9, IL-13 producing)

    3. C.

      Group 3 ILC (IL-17 and IL-22 producing)

    4. D.

      All of the above

    5. E.

      None of the above

  • Correct Answer: (D) All of the above are critical polarized subsets of ILC

  1. 3.

    How are ILC functionally similar to TCR αβ T cells?

    1. A.

      Can proliferate and secrete cytokines

    2. B.

      Exist as polarized subsets

    3. C.

      Interact with conventional T-cells

    4. D.

      Express unique transcription factors

    5. E.

      All of the above

  • Correct Answer: (E) All of the above. ILC share many features with conventional TCR αβ T cells

  1. 4.

    What is the evidence that ILC participate in the pathogenesis of atopic dermatitis?

    1. A.

      Activated ILC2 are increased in atopic dermatitis lesions

    2. B.

      ILC1 over-produce IFN gamma from the peripheral blood of atopic dermatitis patients

    3. C.

      Deficient ILC2 activation is found in atopic dermatitis

    4. D.

      ILC3 are critical in early atopic dermatitis skin lesions

  • Correct Answer: (A) Activated ILC2 are increased in atopic dermatitis skin lesions compared to uninvolved skin

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tay, S.S., Tan, S.Y., Sumaria, N., Roediger, B., Weninger, W. (2017). Innate Lymphoid Cells in the Skin. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics