Skip to main content

Atopic Dermatitis

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

Atopic dermatitis (AD) is a common skin disease that has received much scientific attention over the recent years. Although disease mechanisms had been difficult to dissect, with multiple factors that seem to affect disease activity, skin barrier, aberrant immunity and the microbiota appear to be the important components in pathogenesis. In this chapter, we will discuss the current concept of AD, its related genetic disorders, and the above pathological components to try to provide cutting-edge understanding on pathogenesis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leung DY, Bieber T. Atopic dermatitis. Lancet. 2003;361(9352):151–60. doi:10.1016/s0140-6736(03)12193-9.

    Article  PubMed  Google Scholar 

  2. Bieber T. Atopic dermatitis. N Engl J Med. 2008;358(14):1483–94. doi:10.1056/NEJMra074081.

    Article  CAS  PubMed  Google Scholar 

  3. Johansson SG, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, et al. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the world allergy organization, october 2003. J Allergy Clin Immunol. 2004;113(5):832–6. doi:10.1016/j.jaci.2003.12.591.

    Article  CAS  PubMed  Google Scholar 

  4. Dharmage SC, Lowe AJ, Matheson MC, Burgess JA, Allen KJ, Abramson MJ. Atopic dermatitis and the atopic march revisited. Allergy. 2014;69(1):17–27. doi:10.1111/all.12268.

    Article  CAS  PubMed  Google Scholar 

  5. Williams HC, Burney PG, Hay RJ, Archer CB, Shipley MJ, Hunter JJ, et al. The U.K. working party’s diagnostic criteria for atopic dermatitis. I. Derivation of a minimum set of discriminators for atopic dermatitis. Br J Dermatol. 1994;131(3):383–96.

    Article  CAS  PubMed  Google Scholar 

  6. Weiland SK, Husing A, Strachan DP, Rzehak P, Pearce N. Climate and the prevalence of symptoms of asthma, allergic rhinitis, and atopic eczema in children. Occup Environ Med. 2004;61(7):609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Silverberg JI, Hanifin J, Simpson EL. Climatic factors are associated with childhood eczema prevalence in the united states. J Invest Dermatol. 2013;133(7):1752–9. doi:10.1038/jid.2013.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peroni DG, Piacentini GL, Cametti E, Chinellato I, Boner AL. Correlation between serum 25-hydroxyvitamin D levels and severity of atopic dermatitis in children. Br J Dermatol. 2011;164(5):1078–82. doi:10.1111/j.1365-2133.2010.10147.x.

    Article  CAS  PubMed  Google Scholar 

  9. Flohr C, Pascoe D, Williams HC. Atopic dermatitis and the ‘hygiene hypothesis’: too clean to be true? Br J Dermatol. 2005;152(2):202–16. doi:10.1111/j.1365-2133.2004.06436.x.

    Article  CAS  PubMed  Google Scholar 

  10. Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347(12):869–77. doi:10.1056/NEJMoa020057.

    Article  PubMed  Google Scholar 

  11. Tsakok T, McKeever TM, Yeo L, Flohr C. Does early life exposure to antibiotics increase the risk of eczema? A systematic review. Br J Dermatol. 2013;169(5):983–91. doi:10.1111/bjd.12476.

    Article  CAS  PubMed  Google Scholar 

  12. Abrahamsson TR, Jakobsson HE, Andersson AF, Björkstén B, Engstrand L. Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol. 2012;129(2):434–40.e2. doi:http://dx.doi.org/10.1016/j.jaci.2011.10.025.

  13. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A. 2012;109(21):8334–9. doi:10.1073/pnas.1205624109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnes KC. An update on the genetics of atopic dermatitis: scratching the surface in 2009. J Allergy Clin Immunol. 2010;125(1):16–29. e1-11; quiz 30–1. doi:10.1016/j.jaci.2009.11.008.

  15. Tamari M, Hirota T. Genome-wide association studies of atopic dermatitis. J Dermatol. 2014;41(3):213–20. doi:10.1111/1346-8138.12321.

    Article  CAS  PubMed  Google Scholar 

  16. Weidinger S, Willis-Owen SA, Kamatani Y, Baurecht H, Morar N, Liang L, et al. A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet. 2013;22(23):4841–56. doi:10.1093/hmg/ddt317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet. 2006;38(3):337–42. doi:10.1038/ng1743.

    Article  CAS  PubMed  Google Scholar 

  18. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6. doi:10.1038/ng1767.

    Article  CAS  PubMed  Google Scholar 

  19. Irvine AD, McLean WH, Leung DY. Filaggrin mutations associated with skin and allergic diseases. N Engl J Med. 2011;365(14):1315–27. doi:10.1056/NEJMra1011040.

    Article  CAS  PubMed  Google Scholar 

  20. Baurecht H, Irvine AD, Novak N, Illig T, Buhler B, Ring J, et al. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J Allergy Clin Immunol. 2007;120(6):1406–12. doi:10.1016/j.jaci.2007.08.067.

    Article  CAS  PubMed  Google Scholar 

  21. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, et al. Mutations in SPINK5, encoding a serine protease inhibitor, cause netherton syndrome. Nat Genet. 2000;25(2):141–2. doi:10.1038/75977.

    Article  CAS  PubMed  Google Scholar 

  22. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, et al. Spink5-deficient mice mimic netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet. 2005;37(1):56–65. doi:10.1038/ng1493.

    CAS  PubMed  Google Scholar 

  23. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in netherton syndrome. J Exp Med. 2009;206(5):1135–47. doi:10.1084/jem.20082242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furio L, de Veer S, Jaillet M, Briot A, Robin A, Deraison C, et al. Transgenic kallikrein 5 mice reproduce major cutaneous and systemic hallmarks of netherton syndrome. J Exp Med. 2014;211(3):499–513. doi:10.1084/jem.20131797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. Gene polymorphism in netherton and common atopic disease. Nat Genet. 2001;29(2):175–8. doi:10.1038/ng728.

    Article  CAS  PubMed  Google Scholar 

  26. Oji V, Eckl KM, Aufenvenne K, Natebus M, Tarinski T, Ackermann K, et al. Loss of corneodesmosin leads to severe skin barrier defect, pruritus, and atopy: unraveling the peeling skin disease. Am J Hum Genet. 2010;87(2):274–81. doi:10.1016/j.ajhg.2010.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsumoto M, Zhou Y, Matsuo S, Nakanishi H, Hirose K, Oura H, et al. Targeted deletion of the murine corneodesmosin gene delineates its essential role in skin and hair physiology. Proc Natl Acad Sci U S A. 2008;105(18):6720–4. doi:10.1073/pnas.0709345105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Samuelov L, Sarig O, Harmon RM, Rapaport D, Ishida-Yamamoto A, Isakov O, et al. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet. 2013;45(10):1244–8. doi:10.1038/ng.2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sowerwine KJ, Holland SM, Freeman AF. Hyper-IgE syndrome update. Ann N Y Acad Sci. 2012;1250:25–32. doi:10.1111/j.1749-6632.2011.06387.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448(7157):1058–62. doi:10.1038/nature06096.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046–55. doi:10.1056/NEJMoa0905506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ochs HD, Thrasher AJ. The Wiskott-aldrich syndrome. J Allergy Clin Immunol. 2006;117(4):725–38; quiz 39. doi:10.1016/j.jaci.2006.02.005.

  33. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM, Brooke MA, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365(16):1502–8. doi:10.1056/NEJMoa1100721.

    Article  CAS  PubMed  Google Scholar 

  34. Franzke CW, Cobzaru C, Triantafyllopoulou A, Loffek S, Horiuchi K, Threadgill DW, et al. Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand-dependent terminal keratinocyte differentiation. J Exp Med. 2012;209(6):1105–19. doi:10.1084/jem.20112258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Murthy A, Shao YW, Narala SR, Molyneux SD, Zuniga-Pflucker JC, Khokha R. Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity. 2012;36(1):105–19. doi:10.1016/j.immuni.2012.01.005.

    Article  CAS  PubMed  Google Scholar 

  36. Kobayashi T, Glatz M, Horiuchi K, Kawasaki H, Akiyama H, Kaplan DH, et al. Dysbiosis and Staphylococcus aureus Colonization Drives Inflammation in Atopic Dermatitis. Immunity. 2015;42(4):756–66. doi: 10.1016/j.immuni.2015.03.014.

  37. Oh J, Freeman AF, Park M, Sokolic R, Candotti F, Holland SM, et al. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res. 2013;23(12):2103–14. doi:10.1101/gr.159467.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, et al. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet. 2009;41(5):602–8. doi:10.1038/ng.358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Scharschmidt TC, Man MQ, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP, et al. Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol. 2009;124(3):496–506; e1–6. doi:10.1016/j.jaci.2009.06.046.

  40. Oyoshi MK, Murphy GF, Geha RS. Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J Allergy Clin Immunol. 2009;124(3):485–93. 93 e1. doi:10.1016/j.jaci.2009.05.042.

  41. Moniaga CS, Egawa G, Kawasaki H, Hara-Chikuma M, Honda T, Tanizaki H, et al. Flaky tail mouse denotes human atopic dermatitis in the steady state and by topical application with dermatophagoides pteronyssinus extract. Am J Pathol. 2010;176(5):2385–93. doi:10.2353/ajpath.2010.090957.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, et al. Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol. 2012;129(6):1538–46 e6. doi:10.1016/j.jaci.2012.01.068.

  43. Sasaki T, Shiohama A, Kubo A, Kawasaki H, Ishida-Yamamoto A, Yamada T, et al. A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol. 2013;132(5):1111–20 e4. doi:10.1016/j.jaci.2013.08.027.

  44. Saunders SP, Goh CS, Brown SJ, Palmer CN, Porter RM, Cole C, et al. Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol. 2013;132(5):1121–9. doi:10.1016/j.jaci.2013.08.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miajlovic H, Fallon PG, Irvine AD, Foster TJ. Effect of filaggrin breakdown products on growth of and protein expression by staphylococcus aureus. J Allergy Clin Immunol. 2010;126(6):1184–90 e3. doi:10.1016/j.jaci.2010.09.015.

  46. Kezic S, O’Regan GM, Lutter R, Jakasa I, Koster ES, Saunders S, et al. Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol. 2012;129(4):1031–9 e1. doi:10.1016/j.jaci.2011.12.989.

  47. Kay AB, Ying S, Varney V, Gaga M, Durham SR, Moqbel R, et al. Messenger RNA expression of the cytokine gene cluster, interleukin 3 (IL-3), IL-4, IL-5, and granulocyte/macrophage colony-stimulating factor, in allergen-induced late-phase cutaneous reactions in atopic subjects. J Exp Med. 1991;173(3):775–8.

    Article  CAS  PubMed  Google Scholar 

  48. Hamid Q, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest. 1994;94(2):870–6. doi:10.1172/jci117408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kakinuma T, Nakamura K, Wakugawa M, Mitsui H, Tada Y, Saeki H, et al. Thymus and activation-regulated chemokine in atopic dermatitis: Serum thymus and activation-regulated chemokine level is closely related with disease activity. J Allergy Clin Immunol. 2001;107(3):535–41. doi:http://dx.doi.org/10.1067/mai.2001.113237.

  50. Grewe M, Walther S, Gyufko K, Czech W, Schopf E, Krutmann J. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J Invest Dermatol. 1995;105(3):407–10.

    Article  CAS  PubMed  Google Scholar 

  51. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80. doi:10.1038/ni805.

    CAS  PubMed  Google Scholar 

  52. Yoo J, Omori M, Gyarmati D, Zhou B, Aye T, Brewer A, et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med. 2005;202(4):541–9. doi:10.1084/jem.20041503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA, et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature. 2011;477(7363):229–33. doi:10.1038/nature10329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moniaga CS, Jeong SK, Egawa G, Nakajima S, Hara-Chikuma M, Jeon JE, et al. Protease activity enhances production of thymic stromal lymphopoietin and basophil accumulation in flaky tail mice. Am J Pathol. 2013;182(3):841–51. doi:10.1016/j.ajpath.2012.11.039.

    Article  CAS  PubMed  Google Scholar 

  55. Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, et al. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell. 2013;155(2):285–95. doi:10.1016/j.cell.2013.08.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Souwer Y, Szegedi K, Kapsenberg ML, de Jong EC. IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol. 2010;22(6):821–6. doi:10.1016/j.coi.2010.10.013.

    Article  CAS  PubMed  Google Scholar 

  57. Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan J, Gulewicz KJ, Wang CQ, et al. Progressive activation of T(H)2/T(H)22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54. doi:10.1016/j.jaci.2012.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Suarez-Farinas M, Dhingra N, Gittler J, Shemer A, Cardinale I, de Guzman SC, et al. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J Allergy Clin Immunol. 2013;132(2):361–70. doi:10.1016/j.jaci.2013.04.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y. Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol. 2008;128(11):2625–30. doi:10.1038/jid.2008.111.

    Article  CAS  PubMed  Google Scholar 

  60. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol. 2009;123(6):1244–52 e2. doi:10.1016/j.jaci.2009.03.041.

  61. Hayashida S, Uchi H, Takeuchi S, Esaki H, Moroi Y, Furue M. Significant correlation of serum IL-22 levels with CCL17 levels in atopic dermatitis. J Dermatol Sci. 2011;61(1):78–9. doi:10.1016/j.jdermsci.2010.08.013.

    Article  CAS  PubMed  Google Scholar 

  62. Teraki Y, Sakurai A, Izaki S. IL-13/IL-22-coproducing T cells, a novel subset, are increased in atopic dermatitis. J Allergy Clin Immunol. 2013;132(4):971–4. doi:10.1016/j.jaci.2013.07.029.

    Article  CAS  PubMed  Google Scholar 

  63. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med. 2006;203(10):2271–9. doi:10.1084/jem.20061308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H, et al. IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol. 2009;123(1):59–66 e4. doi:10.1016/j.jaci.2008.10.031.

  65. Konishi H, Tsutsui H, Murakami T, Yumikura-Futatsugi S, Yamanaka K, Tanaka M, et al. IL-18 contributes to the spontaneous development of atopic dermatitis-like inflammatory skin lesion independently of IgE/stat6 under specific pathogen-free conditions. Proc Natl Acad Sci U S A. 2002;99(17):11340–5. doi:10.1073/pnas.152337799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Inoue Y, Aihara M, Kirino M, Harada I, Komori-Yamaguchi J, Yamaguchi Y, et al. Interleukin-18 is elevated in the horny layer in patients with atopic dermatitis and is associated with staphylococcus aureus colonization. Br J Dermatol. 2011;164(3):560–7. doi:10.1111/j.1365-2133.2010.10145.x.

    CAS  PubMed  Google Scholar 

  67. Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60. doi:10.1038/ni1084.

    Article  CAS  PubMed  Google Scholar 

  68. Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, et al. IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. 2006;117(2):411–7. doi:10.1016/j.jaci.2005.10.033.

    Article  CAS  PubMed  Google Scholar 

  69. Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5(170):170ra16. doi:10.1126/scitranslmed.3005374.

  70. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210(13):2939–50. doi:10.1084/jem.20130351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, et al. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A. 2013;110(34):13921–6. doi:10.1073/pnas.1307321110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G, Lehtimaki S, et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol. 2012;132(5):1392–400. doi:10.1038/jid.2011.446.

    Article  CAS  PubMed  Google Scholar 

  73. Agrawal R, Wisniewski JA, Woodfolk JA. The role of regulatory T cells in atopic dermatitis. Curr Probl Dermatol. 2011;41:112–24. doi:10.1159/000323305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Verhagen J, Akdis M, Traidl-Hoffmann C, Schmid-Grendelmeier P, Hijnen D, Knol EF, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol. 2006;117(1):176–83. doi:10.1016/j.jaci.2005.10.040.

    Article  CAS  PubMed  Google Scholar 

  75. Caproni M, Torchia D, Antiga E, Volpi W, del Bianco E, Fabbri P. The effects of tacrolimus ointment on regulatory T lymphocytes in atopic dermatitis. J Clin Immunol. 2006;26(4):370–5. doi:10.1007/s10875-006-9034-2.

    Article  CAS  PubMed  Google Scholar 

  76. Schnopp C, Rad R, Weidinger A, Weidinger S, Ring J, Eberlein B, et al. Fox-P3-positive regulatory T cells are present in the skin of generalized atopic eczema patients and are not particularly affected by medium-dose UVA1 therapy. Photodermatol Photoimmunol Photomed. 2007;23(2-3):81–5. doi:10.1111/j.1600-0781.2007.00284.x.

    Article  CAS  PubMed  Google Scholar 

  77. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. 2001;27(1):18–20. doi:10.1038/83707.

    Article  CAS  PubMed  Google Scholar 

  78. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1. doi:10.1038/83713.

    Article  CAS  PubMed  Google Scholar 

  79. Nagao K, Ginhoux F, Leitner WW, Motegi S, Bennett CL, Clausen BE, et al. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc Natl Acad Sci U S A. 2009;106(9):3312–7. doi:10.1073/pnas.0807126106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kubo A, Nagao K, Yokouchi M, Sasaki H, Amagai M. External antigen uptake by Langerhans cells with reorganization of epidermal tight junction barriers. J Exp Med. 2009;206(13):2937–46. doi:10.1084/jem.20091527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ouchi T, Kubo A, Yokouchi M, Adachi T, Kobayashi T, Kitashima DY, et al. Langerhans cell antigen capture through tight junctions confers preemptive immunity in experimental staphylococcal scalded skin syndrome. J Exp Med. 2011;208(13):2607–13. doi:10.1084/jem.20111718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bieber T, de la Salle H, Wollenberg A, Hakimi J, Chizzonite R, Ring J, et al. Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (Fc epsilon RI). J Exp Med. 1992;175(5):1285–90.

    Article  CAS  PubMed  Google Scholar 

  83. Wollenberg A, Kraft S, Hanau D, Bieber T. Immunomorphological and ultrastructural characterization of Langerhans cells and a novel, inflammatory dendritic epidermal cell (IDEC) population in lesional skin of atopic eczema. J Invest Dermatol. 1996;106(3):446–53.

    Article  CAS  PubMed  Google Scholar 

  84. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Whynot J, Novitskaya I, Cardinale I, et al. Major differences in inflammatory dendritic cells and their products distinguish atopic dermatitis from psoriasis. J Allergy Clin Immunol. 2007;119(5):1210–7. doi:10.1016/j.jaci.2007.03.006.

    Article  CAS  PubMed  Google Scholar 

  85. Maurer D, Ebner C, Reininger B, Fiebiger E, Kraft D, Kinet JP, et al. The high affinity IgE receptor (Fc epsilon RI) mediates IgE-dependent allergen presentation. J Immunol. 1995;154(12):6285–90.

    CAS  PubMed  Google Scholar 

  86. Nakajima S, Igyarto BZ, Honda T, Egawa G, Otsuka A, Hara-Chikuma M, et al. Langerhans cells are critical in epicutaneous sensitization with protein antigen via thymic stromal lymphopoietin receptor signaling. J Allergy Clin Immunol. 2012;129(4):1048–55 e6. doi:10.1016/j.jaci.2012.01.063.

  87. Elentner A, Finke D, Schmuth M, Chappaz S, Ebner S, Malissen B, et al. Langerhans cells are critical in the development of atopic dermatitis-like inflammation and symptoms in mice. J Cell Mol Med. 2009;13(8B):2658–72. doi:10.1111/j.1582-4934.2009.00797.x.

    Article  PubMed  Google Scholar 

  88. Leyden JJ, Marples RR, Kligman AM. Staphylococcus aureus in the lesions of atopic dermatitis. Br J Dermatol. 1974;90(5):525. doi:10.1111/j.1365-2133.1974.tb06447.x.

    Article  CAS  PubMed  Google Scholar 

  89. Guzik TJ, Bzowska M, Kasprowicz A, Czerniawska-Mysik G, Wojcik K, Szmyd D, et al. Persistent skin colonization with staphylococcus aureus in atopic dermatitis: relationship to clinical and immunological parameters. Clin Exp Allergy. 2005;35(4):448–55. doi:10.1111/j.1365-2222.2005.02210.x.

    Article  CAS  PubMed  Google Scholar 

  90. Harder J, Dressel S, Wittersheim M, Cordes J, Meyer-Hoffert U, Mrowietz U, et al. Enhanced expression and secretion of antimicrobial peptides in atopic dermatitis and after superficial skin injury. J Invest Dermatol. 2010;130(5):1355–64. doi:10.1038/jid.2009.432.

    Article  CAS  PubMed  Google Scholar 

  91. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2. doi:10.1126/science.1171700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kong HH, Oh J, Deming C, Conlan S, Grice EA, Beatson MA, et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012;22(5):850–9. doi:10.1101/gr.131029.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bunikowski R, Mielke ME, Skarabis H, Worm M, Anagnostopoulos I, Kolde G, et al. Evidence for a disease-promoting effect of staphylococcus aureus-derived exotoxins in atopic dermatitis. J Allergy Clin Immunol. 2000;105(4):814–9. doi:10.1067/mai.2000.105528.

    Article  CAS  PubMed  Google Scholar 

  94. Kappler J, Kotzin B, Herron L, Gelfand EW, Bigler RD, Boylston A, et al. V beta-specific stimulation of human T cells by staphylococcal toxins. Science. 1989;244(4906):811–3.

    Article  CAS  PubMed  Google Scholar 

  95. Irwin MJ, Hudson KR, Fraser JD, Gascoigne NR. Enterotoxin residues determining T-cell receptor V beta binding specificity. Nature. 1992;359(6398):841–3. doi:10.1038/359841a0.

    Article  CAS  PubMed  Google Scholar 

  96. Leung DY, Harbeck R, Bina P, Reiser RF, Yang E, Norris DA, et al. Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest. 1993;92(3):1374–80. doi:10.1172/jci116711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nomura I, Tanaka K, Tomita H, Katsunuma T, Ohya Y, Ikeda N, et al. Evaluation of the staphylococcal exotoxins and their specific IgE in childhood atopic dermatitis. J Allergy Clin Immunol. 1999;104(2 Pt 1):441–6.

    Article  CAS  PubMed  Google Scholar 

  98. Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, Wahn U, et al. Prevalence and role of serum IgE antibodies to the staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol. 1999;103(1 Pt 1):119–24.

    Article  CAS  PubMed  Google Scholar 

  99. Nakamura Y, Oscherwitz J, Cease KB, Chan SM, Munoz-Planillo R, Hasegawa M, et al. Staphylococcus delta-toxin induces allergic skin disease by activating mast cells. Nature. 2013;503(7476):397–401. doi:10.1038/nature12655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miller LS, Cho JS. Immunity against staphylococcus aureus cutaneous infections. Nat Rev Immunol. 2011;11(8):505–18. doi:10.1038/nri3010.

    Article  CAS  PubMed  Google Scholar 

  101. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, Klotz M, Werfel T, Herz U, et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol. 2004;113(3):565–7.

    Article  CAS  PubMed  Google Scholar 

  102. Mrabet-Dahbi S, Dalpke AH, Niebuhr M, Frey M, Draing C, Brand S, et al. The toll-like receptor 2 R753Q mutation modifies cytokine production and toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol. 2008;121(4):1013–9. doi:10.1016/j.jaci.2007.11.029.

    Article  CAS  PubMed  Google Scholar 

  103. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347(15):1151–60. doi:10.1056/NEJMoa021481.

    Article  CAS  PubMed  Google Scholar 

  104. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol. 2003;171(6):3262–9.

    Article  CAS  PubMed  Google Scholar 

  105. Asano S, Ichikawa Y, Kumagai T, Kawashima M, Imokawa G. Microanalysis of an antimicrobial peptide, beta-defensin-2, in the stratum corneum from patients with atopic dermatitis. Br J Dermatol. 2008;159(1):97–104. doi:10.1111/j.1365-2133.2008.08613.x.

    Article  CAS  PubMed  Google Scholar 

  106. Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY. Defective killing of staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human beta-defensin-3. J Allergy Clin Immunol. 2008;122(1):62–8. doi:10.1016/j.jaci.2008.04.022.

    Article  CAS  PubMed  Google Scholar 

  107. Kalliomaki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol. 2001;107(1):129–34. doi:10.1067/mai.2001.111237.

    Article  CAS  PubMed  Google Scholar 

  108. Penders J, Gerhold K, Stobberingh EE, Thijs C, Zimmermann K, Lau S, et al. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J Allergy Clin Immunol. 2013;132(3):601–7 e8. doi:10.1016/j.jaci.2013.05.043.

  109. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study. Gut. 2007;56(5):661–7. doi:10.1136/gut.2006.100164.

    Article  CAS  PubMed  Google Scholar 

  110. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076–9. doi:10.1016/s0140-6736(00)04259-8.

    Article  CAS  PubMed  Google Scholar 

  111. Eichenfield LF, Tom WL, Berger TG, Krol A, Paller AS, Schwarzenberger K, et al. Guidelines of care for the management of atopic dermatitis: section 2. Management and treatment of atopic dermatitis with topical therapies. J Am Acad Dermatol. 2014;71(1):116–32. doi:10.1016/j.jaad.2014.03.023.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schneider L, Tilles S, Lio P, Boguniewicz M, Beck L, LeBovidge J, et al. Atopic dermatitis: a practice parameter update 2012. J Allergy Clin Immunol. 2013;131(2):295–9. e1-27. doi:10.1016/j.jaci.2012.12.672.

  113. Ruzicka T, Bieber T, Schopf E, Rubins A, Dobozy A, Bos JD, et al. A short-term trial of tacrolimus ointment for atopic dermatitis. European tacrolimus multicenter atopic dermatitis study group. N Engl J Med. 1997;337(12):816–21. doi:10.1056/nejm199709183371203.

    Article  CAS  PubMed  Google Scholar 

  114. Sowden JM, Berth-Jones J, Ross JS, Motley RJ, Marks R, Finlay AY, et al. Double-blind, controlled, crossover study of cyclosporin in adults with severe refractory atopic dermatitis. Lancet. 1991;338(8760):137–40.

    Article  CAS  PubMed  Google Scholar 

  115. Roekevisch E, Spuls PI, Kuester D, Limpens J, Schmitt J. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systematic review. J Allergy Clin Immunol. 2014;133(2):429–38. doi:10.1016/j.jaci.2013.07.049.

    Article  CAS  PubMed  Google Scholar 

  116. Jung T, Stingl G. Atopic dermatitis: therapeutic concepts evolving from new pathophysiologic insights. J Allergy Clin Immunol. 2008;122(6):1074–81. doi:10.1016/j.jaci.2008.09.042.

    Article  CAS  PubMed  Google Scholar 

  117. Hanifin JM, Schneider LC, Leung DY, Ellis CN, Jaffe HS, Izu AE, et al. Recombinant interferon gamma therapy for atopic dermatitis. J Am Acad Dermatol. 1993;28(2 Pt 1):189–97.

    Article  CAS  PubMed  Google Scholar 

  118. Stevens SR, Hanifin JM, Hamilton T, Tofte SJ, Cooper KD. Long-term effectiveness and safety of recombinant human interferon gamma therapy for atopic dermatitis despite unchanged serum IgE levels. Arch Dermatol. 1998;134(7):799–804.

    Article  CAS  PubMed  Google Scholar 

  119. Cox L, Nelson H, Lockey R, Calabria C, Chacko T, Finegold I, et al. Allergen immunotherapy: a practice parameter third update. J Allergy Clin Immunol. 2011;127(1 Suppl):S1–55. doi:10.1016/j.jaci.2010.09.034.

    Article  PubMed  Google Scholar 

  120. Sidbury R, Davis DM, Cohen DE, Cordoro KM, Berger TG, Bergman JN, et al. Guidelines of care for the management of atopic dermatitis: section 3. Management and treatment with phototherapy and systemic agents. J Am Acad Dermatol. 2014;71(2):327–49. doi:10.1016/j.jaad.2014.03.030.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Toichi E, Lu KQ, Swick AR, McCormick TS, Cooper KD. Skin-infiltrating monocytes/macrophages migrate to draining lymph nodes and produce IL-10 after contact sensitizer exposure to UV-irradiated skin. J Invest Dermatol. 2008;128(11):2705–15. doi:10.1038/jid.2008.137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bath-Hextall FJ, Birnie AJ, Ravenscroft JC, Williams HC. Interventions to reduce staphylococcus aureus in the management of atopic eczema: an updated cochrane review. Br J Dermatol. 2010;163(1):12–26. doi:10.1111/j.1365-2133.2010.09743.x.

    CAS  PubMed  Google Scholar 

  123. Willing BP, Russell SL, Finlay BB. Shifting the balance: antibiotic effects on host-microbiota mutualism. Nat Rev Microbiol. 2011;9(4):233–43. doi:10.1038/nrmicro2536.

    Article  CAS  PubMed  Google Scholar 

  124. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6. doi:10.1038/nature11400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huang JT, Abrams M, Tlougan B, Rademaker A, Paller AS. Treatment of staphylococcus aureus colonization in atopic dermatitis decreases disease severity. Pediatrics. 2009;123(5):e808–14. doi:10.1542/peds.2008-2217.

    Article  PubMed  Google Scholar 

  126. Matsuda H, Watanabe N, et al. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int Immunol. 1997;9(3):461–6.

    Article  CAS  PubMed  Google Scholar 

  127. Yagi R, Nagai H, et al. Development of atopic dermatitis-like skin lesions in STAT6-deficient NC/Nga mice. J Immunol. 2002;168(4):2020–7.

    Article  CAS  PubMed  Google Scholar 

  128. Chan LS, Robinson N, et al. Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Invest Dermatol. 2001;117(4):977–83.

    Article  CAS  PubMed  Google Scholar 

  129. Zheng T, Oh MH, et al. Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Invest Dermatol. 2009;129(3):742–51.

    Article  CAS  PubMed  Google Scholar 

  130. Lin W, Truong N, et al. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J Allergy Clin Immunol. 2005;116(5):1106–15.

    Article  CAS  PubMed  Google Scholar 

  131. Dumortier A, Durham AD, et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of notch signaling in the murine skin. PLoS One. 2010;5(2):e9258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Spergel JM, Mizoguchi E, et al. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J Clin Invest. 1998;101(8):1614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Spergel JM, Mizoguchi E, et al. Roles of TH1 and TH2 cytokines in a murine model of allergic dermatitis. J Clin Invest. 1999;103(8):1103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Man MQ, Hatano Y, et al. Characterization of a hapten-induced, murine model with multiple features of atopic dermatitis: structural, immunologic, and biochemical changes following single versus multiple oxazolone challenges. J Invest Dermatol. 2008;128(1):79–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Nagao MD, PhD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Which of the following genes associated with AD/AD-like genetic disorders have function(s) in barrier formation?

    1. A.

      DOCK8

    2. B.

      FLG

    3. C.

      CDSN

    4. D.

      WAS

    5. E.

      All of the above

  2. 2.

    Which of the following genes associated with AD/AD-like genetic disorders have function(s) in immunity?

    1. A.

      STAT3

    2. B.

      DSG1

    3. C.

      SPINK5

    4. D.

      FOXP3

    5. E.

      All of the above

  3. 3.

    Which of the following immune responses are associated with AD?

    1. A.

      T helper type 1 (interferon-γ response)

    2. B.

      T helper type 2 (interleukin-4 response)

    3. C.

      T helper type 17 (interleukin-17 response)

    4. D.

      T helper type 22 (interleukin-22 response)

    5. E.

      All of the above

  4. 4.

    Which of the below AD-like genetic disorders are particularly prone to developing food allergy?

    1. A.

      Hyper IgE syndrome

    2. B.

      Wiskott-Aldrich syndrome

    3. C.

      SAM syndrome

    4. D.

      Peeling skin syndrome

    5. E.

      Netherton syndrome

  5. 5.

    Dysbiosis in lesional atopic skin is overrepresented by:

    1. A.

      Pseudomonas aeruginosa

    2. B.

      Candida albicans

    3. C.

      Malassezia furfur

    4. D.

      Staphylococcus aureus

    5. E.

      All of the above

Answers

  1. 1.

    B, C

  2. 2.

    A, D

  3. 3.

    A

  4. 4.

    C

  5. 5.

    D

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kobayashi, T., Nagao, K. (2017). Atopic Dermatitis. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics