Skip to main content

Toll-Like Receptors

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

There are two major arms of the immune system: the innate immune response and the adaptive immune response. Innate immunity is the first line of defense against microbes and serves to limit infection within the early hours after exposure to a pathogen. It is classically associated with the recognition of pathogens by phagocytic cells via specific receptor recognition molecules or through complement fixation. Essential components of the innate immune response include neutrophils, natural killer cells, natural killer T cells, mast cells, complement, and antimicrobial peptides. Innate immune activation via pattern recognition receptors results in a specific expression of co-stimulatory molecules and cytokines. This inflammatory milieu shapes the subsequent adaptive response, which involves B cell activation and T cell-mediated recognition of foreign antigens presented on major compatibility complexes (MHC) I and II on the cell surface of antigen-presenting cells (APCs). Activated B and T lymphocytes then undergo clonal expansion to provide an antigen-specific immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoffmann JA, Kafatos FC, Janeway CA, et al. Phylogenetic perspectives in innate immunity. Science. 1999;284:1313–8.

    Article  CAS  PubMed  Google Scholar 

  2. Janeway Jr CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov R, Janeway Jr CA. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 1997;91:295–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bilu D, Sauder DN. Imiquimod: modes of action. Br J Dermatol. 2003;149 Suppl 66:5–8.

    PubMed  Google Scholar 

  5. Paul WE. Fundamental immunology. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  6. Girardin SE, Boneca IG, Carneiro LA, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003;300:1584–7.

    Article  CAS  PubMed  Google Scholar 

  7. Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278:8869–72.

    Article  CAS  PubMed  Google Scholar 

  8. Elinav E, Strowig T, Henao-Mejia J, et al. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011; 34:665–79.

    Article  CAS  PubMed  Google Scholar 

  9. Hawn TR, Verbon A, Lettinga KD, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med. 2003;198:1563–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang SY, Jouanguy E, Ugolini S, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317:1522–7.

    Article  CAS  PubMed  Google Scholar 

  11. Krutzik SR, Ochoa MT, Sieling PA, et al. Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med. 2003;9:525–32.

    Article  CAS  PubMed  Google Scholar 

  12. Wong SH, Gochhait S, Malhotra D, et al. Leprosy and the adaptation of human toll-like receptor 1. PLoS Pathog. 2010;6:e1000979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Baker BS, Ovigne JM, Powles AV, et al. Normal keratinocytes express Toll-like receptors (TLRs) 1, 2 and 5: modulation of TLR expression in chronic plaque psoriasis. Br J Dermatol. 2003;148:670–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sellati TJ, Sahay B, Wormser GP. The Toll of a TLR1 polymorphism in lyme disease: a tale of mice and men. Arthritis Rheum. 2012;64:1311–5.

    Article  PubMed  Google Scholar 

  15. Strle K, Shin JJ, Glickstein LJ, et al. Association of a Toll-like receptor 1 polymorphism with heightened Th1 inflammatory responses and antibiotic-refractory Lyme arthritis. Arthritis Rheum. 2012;64:1497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marra CM, Sahi SK, Tantalo LC, et al. Toll-like receptor polymorphisms are associated with increased neurosyphilis risk. Sex Transm Dis. 2014;41:440–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Selway JL, Kurczab T, Kealey T, et al. Toll-like receptor 2 activation and comedogenesis: implications for the pathogenesis of acne. BMC Dermatol. 2013;13:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Tenaud I, Khammari A, Dreno B. In vitro modulation of TLR-2, CD1d and IL-10 by adapalene on normal human skin and acne inflammatory lesions. Exp Dermatol. 2007;16:500–6.

    Article  CAS  PubMed  Google Scholar 

  19. Liu PT, Krutzik SR, Kim J, et al. Cutting edge: all-trans retinoic acid down-regulates TLR2 expression and function. J Immunol. 2005;174:2467–70.

    Article  CAS  PubMed  Google Scholar 

  20. Dispenza MC, Wolpert EB, Gilliland KL, et al. Systemic isotretinoin therapy normalizes exaggerated TLR-2-mediated innate immune responses in acne patients. J Invest Dermatol. 2012;132:2198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, et al. The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol. 2004;113:565–7.

    Article  CAS  PubMed  Google Scholar 

  22. Mrabet-Dahbi S, Dalpke AH, Niebuhr M, et al. The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol. 2008;121:1013–9.

    Article  CAS  PubMed  Google Scholar 

  23. Niebuhr M, Langnickel J, Sigel S, et al. Dysregulation of CD36 upon TLR-2 stimulation in monocytes from patients with atopic dermatitis and the TLR2 R753Q polymorphism. Exp Dermatol. 2010;19:e296–8.

    Article  PubMed  Google Scholar 

  24. Kuo IH, Carpenter-Mendini A, Yoshida T, et al. Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Invest Dermatol. 2013;133:988–98.

    Article  CAS  PubMed  Google Scholar 

  25. Yuki T, Yoshida H, Akazawa Y, et al. Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol. 2011;187:3230–7.

    Article  CAS  PubMed  Google Scholar 

  26. Borkowski AW, Park K, Uchida Y, et al. Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation, and epidermal organelles. J Invest Dermatol. 2013;133:2031–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cho SH, Strickland I, Tomkinson A, et al. Preferential binding of Staphylococcus aureus to skin sites of Th2-mediated inflammation in a murine model. J Invest Dermatol. 2001;116:658–63.

    Article  CAS  PubMed  Google Scholar 

  28. Beck LA, Thaci D, Hamilton JD, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371:130–9.

    Article  PubMed  CAS  Google Scholar 

  29. Vu AT, Baba T, Chen X, et al. Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin in keratinocytes through the Toll-like receptor 2-Toll-like receptor 6 pathway. J Allergy Clin Immunol. 2010;126:985–93, 993 e1-3.

    Article  CAS  PubMed  Google Scholar 

  30. Novak N, Bieber T, Peng WM. The immunoglobulin E-Toll-like receptor network. Int Arch Allergy Immunol. 2010;151:1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Miller LS, O’Connell RM, Gutierrez MA, et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity. 2006;24:79–91.

    Article  CAS  PubMed  Google Scholar 

  32. Takeuchi O, Hoshino K, Akira S. Cutting edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol. 2000;165:5392–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kang TJ, Chae GT. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol. 2001;31:53–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kang TJ, Yeum CE, Kim BC, et al. Differential production of interleukin-10 and interleukin-12 in mononuclear cells from leprosy patients with a Toll-like receptor 2 mutation. Immunology. 2004;112:674–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bouis DA, Popova TG, Takashima A, et al. Dendritic cells phagocytose and are activated by Treponema pallidum. Infect Immun. 2001;69:518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirschfeld M, Kirschning CJ, Schwandner R, et al. Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol. 1999;163:2382–6.

    CAS  PubMed  Google Scholar 

  37. Schroder NW, Diterich I, Zinke A, et al. Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol. 2005;175:2534–40.

    Article  PubMed  Google Scholar 

  38. Jouault T, Ibata-Ombetta S, Takeuchi O, et al. Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis. 2003;188:165–72.

    Article  CAS  PubMed  Google Scholar 

  39. Tada H, Nemoto E, Shimauchi H, et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol. 2002;46:503–12.

    Article  CAS  PubMed  Google Scholar 

  40. Leoni V, Gianni T, Salvioli S, et al. Herpes simplex virus glycoproteins gH/gL and gB bind Toll-like receptor 2, and soluble gH/gL is sufficient to activate NF-kappaB. J Virol. 2012;86:6555–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kurt-Jones EA, Sandor F, Ortiz Y, et al. Use of murine embryonic fibroblasts to define Toll-like receptor activation and specificity. J Endotoxin Res. 2004;10:419–24.

    Article  CAS  PubMed  Google Scholar 

  42. Kurt-Jones EA, Chan M, Zhou S, et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci U S A. 2004;101:1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Setta-Kaffetzi N, Simpson MA, Navarini AA, et al. AP1S3 mutations are associated with pustular psoriasis and impaired Toll-like receptor 3 trafficking. Am J Hum Genet. 2014;94:790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reinert LS, Harder L, Holm CK, et al. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest. 2012;122:1368–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nagy I, Pivarcsi A, Kis K, et al. Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes Infect. 2006;8:2195–205.

    Article  CAS  PubMed  Google Scholar 

  46. Rachmawati D, Bontkes HJ, Verstege MI, et al. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68:331–8.

    Article  CAS  PubMed  Google Scholar 

  47. Raghavan B, Martin SF, Esser PR, et al. Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep. 2012;13:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schmidt M, Raghavan B, Muller V, et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11:814–9.

    Article  CAS  PubMed  Google Scholar 

  49. Curry JL, Qin JZ, Bonish B, et al. Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med. 2003;127:178–86.

    CAS  PubMed  Google Scholar 

  50. Kakeda M, Arock M, Schlapbach C, et al. Increased expression of heat shock protein 90 in keratinocytes and mast cells in patients with psoriasis. J Am Acad Dermatol. 2014;70:683–90.e1.

    Article  CAS  PubMed  Google Scholar 

  51. Pivarcsi A, Bodai L, Rethi B, et al. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int Immunol. 2003;15:721–30.

    Article  CAS  PubMed  Google Scholar 

  52. Yoshikawa T, Kurimoto I, Streilein JW. Tumour necrosis factor-alpha mediates ultraviolet light B-enhanced expression of contact hypersensitivity. Immunology. 1992;76:264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Harberts E, Fishelevich R, Liu J, et al. MyD88 mediates the decision to die by apoptosis or necroptosis after UV irradiation. Innate Immun. 2013;20:529–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ahmad I, Simanyi E, Guroji P, et al. Toll-like receptor-4 deficiency enhances repair of UVR-induced cutaneous DNA damage by nucleotide excision repair mechanism. J Invest Dermatol. 2014;134:1710–7.

    Article  CAS  PubMed  Google Scholar 

  55. Gilliet M, Conrad C, Geiges M, et al. Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch Dermatol. 2004;140:1490–5.

    Article  CAS  PubMed  Google Scholar 

  56. Wohn C, Ober-Blobaum JL, Haak S, et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc Natl Acad Sci U S A. 2013;110:10723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guiducci C, Tripodo C, Gong M, et al. Autoimmune skin inflammation is dependent on plasmacytoid dendritic cell activation by nucleic acids via TLR7 and TLR9. J Exp Med. 2010;207:2931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vollmer J, Tluk S, Schmitz C, et al. Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8. J Exp Med. 2005;202:1575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pisitkun P, Deane JA, Difilippantonio MJ, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science. 2006;312:1669–72.

    Article  CAS  PubMed  Google Scholar 

  60. Guiducci C, Gong M, Xu Z, et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature. 2010;465:937–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Barrat FJ, Coffman RL. Development of TLR inhibitors for the treatment of autoimmune diseases. Immunol Rev. 2008;223:271–83.

    Article  CAS  PubMed  Google Scholar 

  62. Barrat FJ, Meeker T, Chan JH, et al. Treatment of lupus-prone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol. 2007;37:3582–6.

    Article  CAS  PubMed  Google Scholar 

  63. Dumitru CD, Antonysamy MA, Tomai MA, et al. Potentiation of the anti-tumor effects of imidazoquinoline immune response modifiers by cyclophosphamide. Cancer Biol Ther. 2010;10:155–65.

    Article  CAS  PubMed  Google Scholar 

  64. Dummer R, Hauschild A, Becker JC, et al. An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin Cancer Res. 2008;14:856–64.

    Article  CAS  PubMed  Google Scholar 

  65. Deeths MJ, Chapman JT, Dellavalle RP, et al. Treatment of patch and plaque stage mycosis fungoides with imiquimod 5% cream. J Am Acad Dermatol. 2005;52:275–80.

    Article  PubMed  Google Scholar 

  66. Fishelevich R, Zhao Y, Tuchinda P, et al. Imiquimod-induced TLR7 signaling enhances repair of DNA damage induced by ultraviolet light in bone marrow-derived cells. J Immunol. 2011;187:1664–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Novak N, Yu CF, Bussmann C, et al. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy. 2007;62:766–72.

    Article  CAS  PubMed  Google Scholar 

  68. Lande R, Gregorio J, Facchinetti V, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.

    Article  CAS  PubMed  Google Scholar 

  69. Christensen SR, Shupe J, Nickerson K, et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity. 2006;25:417–28.

    Article  CAS  PubMed  Google Scholar 

  70. Lartigue A, Courville P, Auquit I, et al. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J Immunol. 2006;177:1349–54.

    Article  CAS  PubMed  Google Scholar 

  71. Weber JS, Zarour H, Redman B, et al. Randomized phase 2/3 trial of CpG oligodeoxynucleotide PF-3512676 alone or with dacarbazine for patients with unresectable stage III and IV melanoma. Cancer. 2009;115:3944–54.

    Article  CAS  PubMed  Google Scholar 

  72. Millward M, Underhill C, Lobb S, et al. Phase I study of tremelimumab (CP-675 206) plus PF-3512676 (CPG 7909) in patients with melanoma or advanced solid tumours. Br J Cancer. 2013;108:1998–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tarhini AA, Leng S, Moschos SJ, et al. Safety and immunogenicity of vaccination with MART-1 (26-35, 27L), gp100 (209-217, 210M), and tyrosinase (368-376, 370D) in adjuvant with PF-3512676 and GM-CSF in metastatic melanoma. J Immunother. 2012;35:359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim YH, Girardi M, Duvic M, et al. Phase I trial of a Toll-like receptor 9 agonist, PF-3512676 (CPG 7909), in patients with treatment-refractory, cutaneous T-cell lymphoma. J Am Acad Dermatol. 2010;63:975–83.

    Article  CAS  PubMed  Google Scholar 

  75. Kim YH, Gratzinger D, Harrison C, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood. 2012;119:355–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kang SS, Kauls LS, Gaspari AA. Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol. 2006;54:951–83; quiz 983–6.

    Article  PubMed  Google Scholar 

  77. Medzhitov R. Approaching the asymptote: 20 years later. Immunity. 2009;30:766–75.

    Article  CAS  PubMed  Google Scholar 

  78. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.

    Article  CAS  PubMed  Google Scholar 

  79. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.

    Article  CAS  PubMed  Google Scholar 

  80. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  81. Hoshino K, Takeuchi O, Kawai T, et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.

    CAS  PubMed  Google Scholar 

  82. Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med. 1999;189:1777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol. 2005;17:1–14.

    Article  CAS  PubMed  Google Scholar 

  84. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.

    Article  CAS  PubMed  Google Scholar 

  85. Lemaitre B. The road to Toll. Nat Rev Immunol. 2004;4:521–7.

    Article  CAS  PubMed  Google Scholar 

  86. Beutler B, Poltorak A. The sole gateway to endotoxin response: how LPS was identified as Tlr4, and its role in innate immunity. Drug Metab Dispos. 2001;29:474–8.

    CAS  PubMed  Google Scholar 

  87. Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  CAS  PubMed  Google Scholar 

  88. Ozinsky A, Underhill DM, Fontenot JD, et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci U S A. 2000;97:13766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413:732–8.

    Article  CAS  PubMed  Google Scholar 

  90. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410:1099–103.

    Article  CAS  PubMed  Google Scholar 

  91. Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science. 2004;303:1526–9.

    Article  CAS  PubMed  Google Scholar 

  92. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    Article  CAS  PubMed  Google Scholar 

  93. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Quintana FJ, Cohen IR. Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol. 2005;175:2777–82.

    Article  CAS  PubMed  Google Scholar 

  95. Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem. 2001;276:31332–9.

    Article  CAS  PubMed  Google Scholar 

  96. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    Article  CAS  PubMed  Google Scholar 

  97. Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.

    Article  CAS  PubMed  Google Scholar 

  98. Martin SF, Esser PR, Weber FC, et al. Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy. 2011;66:1152–63.

    Article  CAS  PubMed  Google Scholar 

  99. Gaspari AA. Innate and adaptive immunity and the pathophysiology of psoriasis. J Am Acad Dermatol. 2006;54:S67–80.

    Article  PubMed  Google Scholar 

  100. Kondo T, Kawai T, Akira S. Dissecting negative regulation of Toll-like receptor signaling. Trends Immunol. 2012;33:449–58.

    Article  CAS  PubMed  Google Scholar 

  101. Funderburg N, Lederman MM, Feng Z, et al. Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Proc Natl Acad Sci U S A. 2007;104:18631–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med. 2005;11:1173–9.

    Article  CAS  PubMed  Google Scholar 

  103. Babelova A, Moreth K, Tsalastra-Greul W, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009;284:24035–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Schaefer L, Babelova A, Kiss E, et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J Clin Invest. 2005;115:2223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Satta N, Kruithof EK, Fickentscher C, et al. Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies. Blood. 2011;117:5523–31.

    Article  CAS  PubMed  Google Scholar 

  106. Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010: 2010 pii 672395 doi:10.1155/2010 672395 ePub 2010 July 13.

  107. Cavassani KA, Ishii M, Wen H, et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med. 2008;205:2609–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kariko K, Ni H, Capodici J, et al. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279:12542–50.

    Article  CAS  PubMed  Google Scholar 

  109. Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science. 2002;298:1025–9.

    Article  CAS  PubMed  Google Scholar 

  110. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94.

    Article  CAS  PubMed  Google Scholar 

  111. Okamura Y, Watari M, Jerud ES, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2001;276:10229–33.

    Article  CAS  PubMed  Google Scholar 

  112. Vogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13:1042–9.

    Article  CAS  PubMed  Google Scholar 

  113. Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37.

    Article  CAS  PubMed  Google Scholar 

  114. Means TK, Hayashi F, Smith KD, et al. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol. 2003;170:5165–75.

    Article  CAS  PubMed  Google Scholar 

  115. Doring Y, Hurst J, Lorenz M, et al. Human antiphospholipid antibodies induce TNFalpha in monocytes via Toll-like receptor 8. Immunobiology. 2010;215:230–41.

    Article  PubMed  CAS  Google Scholar 

  116. Hurst J, Prinz N, Lorenz M, et al. TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1beta and caspase-1 in monocytes and dendritic cells. Immunobiology. 2009;214:683–91.

    Article  CAS  PubMed  Google Scholar 

  117. Imaeda AB, Watanabe A, Sohail MA, et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest. 2009;119:305–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Leadbetter EA, Rifkin IR, Hohlbaum AM, et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature. 2002;416:603–7.

    Article  CAS  PubMed  Google Scholar 

  119. Hasan U, Chaffois C, Gaillard C, et al. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 2005;174:2942–50.

    Article  CAS  PubMed  Google Scholar 

  120. Sieling PA, Modlin RL. Toll-like receptors: mammalian “taste receptors” for a smorgasbord of microbial invaders. Curr Opin Microbiol. 2002;5:70–5.

    Article  CAS  PubMed  Google Scholar 

  121. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–52.

    Article  CAS  PubMed  Google Scholar 

  122. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3:984–93.

    Article  CAS  PubMed  Google Scholar 

  123. Yamane H, Paul WE. Cytokines of the gamma(c) family control CD4+ T cell differentiation and function. Nat Immunol. 2012;13:1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pulendran B, Kumar P, Cutler CW, et al. Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol. 2001;167:5067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science. 2003;299:1033–6.

    Article  CAS  PubMed  Google Scholar 

  126. Kabelitz D. Expression and function of Toll-like receptors in T lymphocytes. Curr Opin Immunol. 2007;19:39–45.

    Article  CAS  PubMed  Google Scholar 

  127. Sutmuller RP, den Brok MH, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest. 2006;116:485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature. 2005;438:364–8.

    Article  CAS  PubMed  Google Scholar 

  129. Ruprecht CR, Lanzavecchia A. Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol. 2006;36:810–6.

    Article  CAS  PubMed  Google Scholar 

  130. Lebre MC, van der Aar AM, van Baarsen L, et al. Human keratinocytes express functional Toll-like receptor 3, 4, 5, and 9. J Invest Dermatol. 2007;127:331–41.

    Article  CAS  PubMed  Google Scholar 

  131. Miller LS, Modlin RL. Human keratinocyte Toll-like receptors promote distinct immune responses. J Invest Dermatol. 2007;127:262–3.

    Article  CAS  PubMed  Google Scholar 

  132. Renn CN, Sanchez DJ, Ochoa MT, et al. TLR activation of Langerhans cell-like dendritic cells triggers an antiviral immune response. J Immunol. 2006;177:298–305.

    Article  CAS  PubMed  Google Scholar 

  133. Miller LS, Modlin RL. Toll-like receptors in the skin. Semin Immunopathol. 2007;29:15–26.

    Article  CAS  PubMed  Google Scholar 

  134. Proost P, Vynckier AK, Mahieu F, et al. Microbial Toll-like receptor ligands differentially regulate CXCL10/IP-10 expression in fibroblasts and mononuclear leukocytes in synergy with IFN-gamma and provide a mechanism for enhanced synovial chemokine levels in septic arthritis. Eur J Immunol. 2003;33:3146–53.

    Article  CAS  PubMed  Google Scholar 

  135. Proost P, Verpoest S, Van de Borne K, et al. Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-gamma in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. J Leukoc Biol. 2004;75:777–84.

    Article  CAS  PubMed  Google Scholar 

  136. Jin SH, Kang HY. Activation of toll-like receptors 1, 2, 4, 5, and 7 on human melanocytes modulate pigmentation. Ann Dermatol. 2010;22:486–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yu N, Zhang S, Zuo F, et al. Cultured human melanocytes express functional toll-like receptors 2-4, 7 and 9. J Dermatol Sci. 2009;56:113–20.

    Article  CAS  PubMed  Google Scholar 

  138. Fitzner N, Clauberg S, Essmann F, et al. Human skin endothelial cells can express all 10 TLR genes and respond to respective ligands. Clin Vaccine Immunol. 2008;15:138–46.

    Article  CAS  PubMed  Google Scholar 

  139. Kopp A, Buechler C, Neumeier M, et al. Innate immunity and adipocyte function: ligand-specific activation of multiple Toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity (Silver Spring). 2009;17:648–56.

    Article  CAS  Google Scholar 

  140. Brenner C, Simmonds RE, Wood S, et al. TLR signalling and adapter utilization in primary human in vitro differentiated adipocytes. Scand J Immunol. 2012;76:359–70.

    Article  CAS  PubMed  Google Scholar 

  141. Kulka M, Metcalfe DD. TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol. 2006;43:1579–86.

    Article  CAS  PubMed  Google Scholar 

  142. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194:863–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168:554–61.

    Article  CAS  PubMed  Google Scholar 

  144. Hayashi F, Means TK, Luster AD. Toll-like receptors stimulate human neutrophil function. Blood. 2003;102:2660–9.

    Article  CAS  PubMed  Google Scholar 

  145. Armant MA, Fenton MJ. Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol. 2002;3:REVIEWS3011.

    Google Scholar 

  146. Gay NJ, Symmons MF, Gangloff M, et al. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14:546–58.

    Article  CAS  PubMed  Google Scholar 

  147. O’Neill LA. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol Rev. 2008;226:10–8.

    Article  PubMed  Google Scholar 

  148. O’Neill LA. How Toll-like receptors signal: what we know and what we don’t know. Curr Opin Immunol. 2006;18:3–9.

    Article  PubMed  CAS  Google Scholar 

  149. Yamamoto M, Sato S, Hemmi H, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–3.

    Article  CAS  PubMed  Google Scholar 

  150. Frazao JB, Errante PR, Condino-Neto A. Toll-like receptors’ pathway disturbances are associated with increased susceptibility to infections in humans. Arch Immunol Ther Exp (Warsz). 2013;61:427–43.

    Article  CAS  Google Scholar 

  151. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    Article  CAS  PubMed  Google Scholar 

  152. Hubbard LL, Moore BB. IRAK-M regulation and function in host defense and immune homeostasis. Infect Dis Rep. 2010;2(1) pii: e9.

    Google Scholar 

  153. Kobayashi K, Hernandez LD, Galan JE, et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell. 2002;110:191–202.

    Article  CAS  PubMed  Google Scholar 

  154. van ’t Veer C, van den Pangaart PS, van Zoelen MA, et al. Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol. 2007;179:7110–20.

    Article  Google Scholar 

  155. Lech M, Kantner C, Kulkarni OP, et al. Interleukin-1 receptor-associated kinase-M suppresses systemic lupus erythematosus. Ann Rheum Dis. 2011;70(12):2207–17.

    Article  CAS  PubMed  Google Scholar 

  156. Seki M, Kohno S, Newstead MW, et al. Critical role of IL-1 receptor-associated kinase-M in regulating chemokine-dependent deleterious inflammation in murine influenza pneumonia. J Immunol. 2010;184:1410–8.

    Article  CAS  PubMed  Google Scholar 

  157. Dong GH, Gong JP, Li JZ, et al. Association between gene polymorphisms of IRAK-M and the susceptibility of sepsis. Inflammation. 2013;36:1087–93.

    Article  CAS  PubMed  Google Scholar 

  158. Flannery S, Bowie AG. The interleukin-1 receptor-associated kinases: critical regulators of innate immune signalling. Biochem Pharmacol. 2010;80:1981–91.

    Article  CAS  PubMed  Google Scholar 

  159. Su J, Zhang T, Tyson J, et al. The interleukin-1 receptor-associated kinase M selectively inhibits the alternative, instead of the classical NFkappaB pathway. J Innate Immun. 2009;1:164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Weersma RK, Oostenbrug LE, Nolte IM, et al. Association of interleukin-1 receptor-associated kinase M (IRAK-M) and inflammatory bowel diseases. Scand J Gastroenterol. 2007; 42:827–33.

    Article  CAS  PubMed  Google Scholar 

  161. Adib-Conquy M, Adrie C, Fitting C, et al. Up-regulation of MyD88s and SIGIRR, molecules inhibiting Toll-like receptor signaling, in monocytes from septic patients. Crit Care Med. 2006;34:2377–85.

    Article  CAS  PubMed  Google Scholar 

  162. Burns K, Janssens S, Brissoni B, et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med. 2003;197:263–8.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Janssens S, Burns K, Tschopp J, et al. Regulation of interleukin-1- and lipopolysaccharide-induced NF-kappaB activation by alternative splicing of MyD88. Curr Biol. 2002;12:467–71.

    Article  CAS  PubMed  Google Scholar 

  164. Schimming TT, Parwez Q, Petrasch-Parwez E, et al. Association of toll-interacting protein gene polymorphisms with atopic dermatitis. BMC Dermatol. 2007;7:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Steenholdt C, Andresen L, Pedersen G, et al. Expression and function of toll-like receptor 8 and Tollip in colonic epithelial cells from patients with inflammatory bowel disease. Scand J Gastroenterol. 2009;44:195–204.

    Article  CAS  PubMed  Google Scholar 

  166. Nocturne G, Boudaoud S, Miceli-Richard C, et al. Germline and somatic genetic variations of TNFAIP3 in lymphoma complicating primary Sjogren’s syndrome. Blood. 2013;122:4068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ma A, Malynn BA. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat Rev Immunol. 2012;12:774–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Liang Y, Xu WD, Peng H, et al. SOCS signaling in autoimmune diseases: molecular mechanisms and therapeutic implications. Eur J Immunol. 2014;44:1265–75.

    Article  CAS  PubMed  Google Scholar 

  169. Ramirez-Velez G, Medina F, Ramirez-Montano L, et al. Constitutive phosphorylation of interferon receptor A-associated signaling proteins in systemic lupus erythematosus. PLoS One. 2012;7:e41414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Wang C, Feng CC, Pan HF, et al. Therapeutic potential of SIGIRR in systemic lupus erythematosus. Rheumatol Int. 2013;33:1917–21.

    Article  CAS  PubMed  Google Scholar 

  171. Lech M, Kulkarni OP, Pfeiffer S, et al. Tir8/Sigirr prevents murine lupus by suppressing the immunostimulatory effects of lupus autoantigens. J Exp Med. 2008;205:1879–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Callahan JA, Hammer GE, Agelides A, et al. Cutting edge: ABIN-1 protects against psoriasis by restricting MyD88 signals in dendritic cells. J Immunol. 2013;191:535–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zhou J, Wu R, High AA, et al. A20-binding inhibitor of NF-kappaB (ABIN1) controls Toll-like receptor-mediated CCAAT/enhancer-binding protein beta activation and protects from inflammatory disease. Proc Natl Acad Sci U S A. 2011;108:E998–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cell Mol Immunol. 2013;10:65–71.

    Article  CAS  PubMed  Google Scholar 

  175. Alam MM, O’Neill LA. MicroRNAs and the resolution phase of inflammation in macrophages. Eur J Immunol. 2011;41:2482–5.

    Article  CAS  PubMed  Google Scholar 

  176. Chatzikyriakidou A, Voulgari PV, Georgiou I, et al. The role of microRNA-146a (miR-146a) and its target IL-1R-associated kinase (IRAK1) in psoriatic arthritis susceptibility. Scand J Immunol. 2010;71:382–5.

    Article  CAS  PubMed  Google Scholar 

  177. Sun C, Li N, Yang Z, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 2013;105:1750–8.

    Article  CAS  PubMed  Google Scholar 

  178. Chen P, Price C, Li Z, et al. miR-9 is an essential oncogenic microRNA specifically overexpressed in mixed lineage leukemia-rearranged leukemia. Proc Natl Acad Sci U S A. 2013;110:11511–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhu W, Xu B. MicroRNA-21 identified as predictor of cancer outcome: a meta-analysis. PLoS One. 2014;9:e103373.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Quinn SR, O’Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol. 2011;23:421–5.

    Article  CAS  PubMed  Google Scholar 

  181. Bulut Y, Faure E, Thomas L, et al. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol. 2001;167:987–94.

    Article  CAS  PubMed  Google Scholar 

  182. Zhang G, Ghosh S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J Biol Chem. 2002;277:7059–65.

    Article  CAS  PubMed  Google Scholar 

  183. Burns K, Clatworthy J, Martin L, et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol. 2000;2:346–51.

    Article  CAS  PubMed  Google Scholar 

  184. Didierlaurent A, Brissoni B, Velin D, et al. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol Cell Biol. 2006;26:735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Lai Y, Gallo RL. Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets. 2008;8:144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Leyden JJ, McGinley KJ, Vowels B. Propionibacterium acnes colonization in acne and nonacne. Dermatology. 1998;196:55–8.

    Article  CAS  PubMed  Google Scholar 

  187. Findley K, Oh J, Yang J, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498:367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Sugisaki H, Yamanaka K, Kakeda M, et al. Increased interferon-gamma, interleukin-12p40 and IL-8 production in Propionibacterium acnes-treated peripheral blood mononuclear cells from patient with acne vulgaris: host response but not bacterial species is the determinant factor of the disease. J Dermatol Sci. 2009;55:47–52.

    Article  CAS  PubMed  Google Scholar 

  189. Fitz-Gibbon S, Tomida S, Chiu BH, et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol. 2013;133:2152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ingham E, Eady EA, Goodwin CE, et al. Pro-inflammatory levels of interleukin-1 alpha-like bioactivity are present in the majority of open comedones in acne vulgaris. J Invest Dermatol. 1992;98:895–901.

    Article  CAS  PubMed  Google Scholar 

  191. Vowels BR, Yang S, Leyden JJ. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun. 1995;63:3158–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Jugeau S, Tenaud I, Knol AC, et al. Induction of toll-like receptors by Propionibacterium acnes. Br J Dermatol. 2005;153:1105–13.

    Article  CAS  PubMed  Google Scholar 

  194. Jasson F, Nagy I, Knol AC, et al. Different strains of Propionibacterium acnes modulate differently the cutaneous innate immunity. Exp Dermatol. 2013;22:587–92.

    Article  CAS  PubMed  Google Scholar 

  195. Kuo IH, Yoshida T, De Benedetto A, et al. The cutaneous innate immune response in patients with atopic dermatitis. J Allergy Clin Immunol. 2013;131:266–78.

    Article  CAS  PubMed  Google Scholar 

  196. Odhiambo JA, Williams HC, Clayton TO, et al. Global variations in prevalence of eczema symptoms in children from ISAAC Phase Three. J Allergy Clin Immunol. 2009;124:1251–8.e23.

    Article  PubMed  Google Scholar 

  197. Leung DY. Infection in atopic dermatitis. Curr Opin Pediatr. 2003;15:399–404.

    Article  PubMed  Google Scholar 

  198. Hasannejad H, Takahashi R, Kimishima M, et al. Selective impairment of Toll-like receptor 2-mediated proinflammatory cytokine production by monocytes from patients with atopic dermatitis. J Allergy Clin Immunol. 2007;120:69–75.

    Article  CAS  PubMed  Google Scholar 

  199. Niebuhr M, Lutat C, Sigel S, et al. Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy. 2009;64:1580–7.

    Article  CAS  PubMed  Google Scholar 

  200. Ong PY, Ohtake T, Brandt C, et al. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med. 2002;347:1151–60.

    Article  CAS  PubMed  Google Scholar 

  201. Lai Y, Cogen AL, Radek KA, et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol. 2010;130:2211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sumikawa Y, Asada H, Hoshino K, et al. Induction of beta-defensin 3 in keratinocytes stimulated by bacterial lipopeptides through toll-like receptor 2. Microbes Infect. 2006;8:1513–21.

    Article  CAS  PubMed  Google Scholar 

  203. Gariboldi S, Palazzo M, Zanobbio L, et al. Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of beta-defensin 2 via TLR2 and TLR4. J Immunol. 2008;181:2103–10.

    Article  CAS  PubMed  Google Scholar 

  204. Kaplan DH, Igyarto BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12:114–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Martin SF, Dudda JC, Bachtanian E, et al. Toll-like receptor and IL-12 signaling control susceptibility to contact hypersensitivity. J Exp Med. 2008;205:2151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Esser PR, Wolfle U, Durr C, et al. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PLoS One. 2012;7:e41340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Scheibner KA, Lutz MA, Boodoo S, et al. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J Immunol. 2006;177:1272–81.

    Article  CAS  PubMed  Google Scholar 

  208. Termeer C, Benedix F, Sleeman J, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195:99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Muto J, Morioka Y, Yamasaki K, et al. Hyaluronan digestion controls DC migration from the skin. J Clin Invest. 2014;124:1309–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Sato N, Kinbara M, Kuroishi T, et al. Lipopolysaccharide promotes and augments metal allergies in mice, dependent on innate immunity and histidine decarboxylase. Clin Exp Allergy. 2007;37:743–51.

    Article  CAS  PubMed  Google Scholar 

  211. Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71–87.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Henseler T, Christophers E. Disease concomitance in psoriasis. J Am Acad Dermatol. 1995;32:982–6.

    Article  CAS  PubMed  Google Scholar 

  213. Harder J, Bartels J, Christophers E, et al. A peptide antibiotic from human skin. Nature. 1997;387:861.

    Article  CAS  PubMed  Google Scholar 

  214. Gallo RL, Ono M, Povsic T, et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A. 1994;91:11035–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Miller LS, Sorensen OE, Liu PT, et al. TGF-alpha regulates TLR expression and function on epidermal keratinocytes. J Immunol. 2005;174:6137–43.

    Article  CAS  PubMed  Google Scholar 

  216. Morizane S, Yamasaki K, Muhleisen B, et al. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J Invest Dermatol. 2012;132:135–43.

    Article  CAS  PubMed  Google Scholar 

  217. Litjens NH, Rademaker M, Ravensbergen B, et al. Monomethylfumarate affects polarization of monocyte-derived dendritic cells resulting in down-regulated Th1 lymphocyte responses. Eur J Immunol. 2004;34:565–75.

    Article  CAS  PubMed  Google Scholar 

  218. Gambichler T, Kobus S, Kobus A, et al. Expression of antimicrobial peptides and proteins in etanercept-treated psoriasis patients. Regul Pept. 2011;167:163–6.

    Article  CAS  PubMed  Google Scholar 

  219. Krishna S, Miller LS. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin Immunopathol. 2012;34:261–80.

    Article  CAS  PubMed  Google Scholar 

  220. Ermertcan AT, Ozturk F, Gunduz K. Toll-like receptors and skin. J Eur Acad Dermatol Venereol. 2011;25:997–1006.

    Article  CAS  PubMed  Google Scholar 

  221. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11:443–51.

    Article  CAS  PubMed  Google Scholar 

  222. Picard C, Casanova JL, Puel A. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IkappaBalpha deficiency. Clin Microbiol Rev. 2011;24:490–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Picard C, Puel A, Bonnet M, et al. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science. 2003;299:2076–9.

    Article  CAS  PubMed  Google Scholar 

  224. Bochud PY, Hawn TR, Aderem A. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol. 2003;170:3451–4.

    Article  CAS  PubMed  Google Scholar 

  225. Underhill DM, Ozinsky A, Smith KD, et al. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A. 1999;96:14459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Schultz CP, Wolf V, Lange R, et al. Evidence for a new type of outer membrane lipid in oral spirochete Treponema denticola. Functioning permeation barrier without lipopolysaccharides. J Biol Chem. 1998;273:15661–6.

    Article  CAS  PubMed  Google Scholar 

  227. Silver AC, Dunne DW, Zeiss CJ, et al. MyD88 deficiency markedly worsens tissue inflammation and bacterial clearance in mice infected with Treponema pallidum, the agent of syphilis. PLoS One. 2013;8:e71388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Sing A, Rost D, Tvardovskaia N, et al. Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med. 2002;196:1017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Hajjar AM, Ernst RK, Fortuno 3rd ES, et al. Humanized TLR4/MD-2 mice reveal LPS recognition differentially impacts susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathog. 2012;8:e1002963.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Cassiani-Ingoni R, Cabral ES, Lunemann JD, et al. Borrelia burgdorferi Induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol. 2006;65:540–8.

    Article  CAS  PubMed  Google Scholar 

  231. Wooten RM, Ma Y, Yoder RA, et al. Toll-like receptor 2 is required for innate, but not acquired, host defense to Borrelia burgdorferi. J Immunol. 2002;168:348–55.

    Article  CAS  PubMed  Google Scholar 

  232. Netea MG, Van Der Graaf CA, Vonk AG, et al. The role of toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185:1483–9.

    Article  CAS  PubMed  Google Scholar 

  233. Biondo C, Malara A, Costa A, et al. Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol. 2012;42:2632–43.

    Article  CAS  PubMed  Google Scholar 

  234. Cai M, Li M, Wang K, et al. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-kappaB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PLoS One. 2013;8:e54586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Krug A, Luker GD, Barchet W, et al. Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood. 2004;103:1433–7.

    Article  CAS  PubMed  Google Scholar 

  236. Lund J, Sato A, Akira S, et al. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med. 2003;198:513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Lima GK, Zolini GP, Mansur DS, et al. Toll-like receptor (TLR) 2 and TLR9 expressed in trigeminal ganglia are critical to viral control during herpes simplex virus 1 infection. Am J Pathol. 2010;177:2433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Sorensen LN, Reinert LS, Malmgaard L, et al. TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol. 2008;181:8604–12.

    Article  CAS  PubMed  Google Scholar 

  239. van Lint AL, Murawski MR, Goodbody RE, et al. Herpes simplex virus immediate-early ICP0 protein inhibits Toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J Virol. 2010;84:10802–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Sato A, Linehan MM, Iwasaki A. Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci U S A. 2006;103:17343–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Ding C, Wang L, Al-Ghawi H, et al. Toll-like receptor engagement stimulates anti-snRNP autoreactive B cells for activation. Eur J Immunol. 2006;36:2013–24.

    Article  CAS  PubMed  Google Scholar 

  242. Demaria O, Pagni PP, Traub S, et al. TLR8 deficiency leads to autoimmunity in mice. J Clin Invest. 2010;120:3651–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. de Koning HD, Simon A, Zeeuwen PL, et al. Pattern recognition receptors in immune disorders affecting the skin. J Innate Immun. 2012;4:225–40.

    Article  PubMed  CAS  Google Scholar 

  244. Deane JA, Pisitkun P, Barrett RS, et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity. 2007;27:801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Rutz M, Metzger J, Gellert T, et al. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol. 2004;34:2541–50.

    Article  CAS  PubMed  Google Scholar 

  246. Ehlers M, Fukuyama H, McGaha TL, et al. TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med. 2006;203:553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Nickerson KM, Christensen SR, Cullen JL, et al. TLR9 promotes tolerance by restricting survival of anergic anti-DNA B cells, yet is also required for their activation. J Immunol. 2013;190:1447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Nickerson KM, Christensen SR, Shupe J, et al. TLR9 regulates TLR7- and MyD88-dependent autoantibody production and disease in a murine model of lupus. J Immunol. 2010;184:1840–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Lyn-Cook BD, Xie C, Oates J, et al. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: ethnic differences and potential new targets for therapeutic drugs. Mol Immunol. 2014;61:38–43.

    Article  CAS  PubMed  Google Scholar 

  250. Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293–307.

    Article  CAS  PubMed  Google Scholar 

  251. Wenzel J, Tormo D, Tuting T. Toll-like receptor-agonists in the treatment of skin cancer: history, current developments and future prospects. Handb Exp Pharmacol. 2008;181:201–20.

    Google Scholar 

  252. Narayan R, Nguyen H, Bentow JJ, et al. Immunomodulation by imiquimod in patients with high-risk primary melanoma. J Invest Dermatol. 2012;132:163–9.

    Article  CAS  PubMed  Google Scholar 

  253. Molteni M, Marabella D, Orlandi C, et al. Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4. Cancer Lett. 2006;235:75–83.

    Article  CAS  PubMed  Google Scholar 

  254. Adams S. Toll-like receptor agonists in cancer therapy. Immunotherapy. 2009;1:949–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Molenkamp BG, van Leeuwen PA, Meijer S, et al. Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res. 2007;13:2961–9.

    Article  CAS  PubMed  Google Scholar 

  256. Tormo D, Ferrer A, Bosch P, et al. Therapeutic efficacy of antigen-specific vaccination and toll-like receptor stimulation against established transplanted and autochthonous melanoma in mice. Cancer Res. 2006;66:5427–35.

    Article  CAS  PubMed  Google Scholar 

  257. CpG 7909: PF 3512676, PF-3512676. Drugs R D. 2006;7:312–6.

    Google Scholar 

  258. Huen AO, Rook AH. Toll receptor agonist therapy of skin cancer and cutaneous T-cell lymphoma. Curr Opin Oncol. 2014;26:237–44.

    Article  CAS  PubMed  Google Scholar 

  259. Murphy GM. Ultraviolet radiation and immunosuppression. Br J Dermatol. 2009;161 Suppl 3:90–5.

    Article  CAS  PubMed  Google Scholar 

  260. Harberts E, Gaspari AA. TLR signaling and DNA repair: are they associated? J Invest Dermatol. 2013;133:296–302.

    Article  CAS  PubMed  Google Scholar 

  261. Bernard JJ, Cowing-Zitron C, Nakatsuji T, et al. Ultraviolet radiation damages self noncoding RNA and is detected by TLR3. Nat Med. 2012;18:1286–90.

    Article  CAS  PubMed  Google Scholar 

  262. Gaspari AA, Fleisher TA, Kraemer KH. Impaired interferon production and natural killer cell activation in patients with the skin cancer-prone disorder, xeroderma pigmentosum. J Clin Invest. 1993;92:1135–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Borkowski AW, Kuo IH, Bernard JJ, et al. Toll-like receptor 3 activation is required for normal skin barrier repair following UV damage. J Invest Dermatol. 2015;135(2):569–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Gaspari MD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Which of the following represent a negative regulator (inhibitor) of TLR function?

    1. A.

      IRAK-M

    2. B.

      TOLLIP

    3. C.

      SOCS-1

    4. D.

      All of the above

    5. E.

      None of the above

  • Correct answer: D-All of the above. IRAK-M, TOLLIP and SOCS-1 are all TLR negative regulators

  1. 2.

    Which skin disease have TLR negative regulators been associated?

    1. A.

      Non-melanoma skin cancer

    2. B.

      Psoriasis

    3. C.

      Atopic Dermatitis

    4. D.

      Cutaneous T-cell lymphoma

  • Correct answer: (C)-TOLLIP mutations have been associated with Atopic dermatitis. However, the exact role of these mutations in the pathophysiology of this common skin disease remains unclear

  1. 3.

    How do TLRs mediate pro-inflammatory cytokine production in acne vulgaris?

    1. A.

      PAMPs from P. acnes activate TLR2 and TLR4, inciting the production of pro-inflammatory cytokines

    2. B.

      PAMPs from S. aureus induce TLR2 activation

    3. C.

      TLRs are not involved in the pathophysiology of acne

    4. D.

      PAMPs from the pilosebacious unit activate TLR7,8,9

  • Correct answer: (A)-P. acnes microbial products such as LPS and peptidoglycan activate TLR2 and TLR4 to active the production of proinflammatory cytokines in the skin. It is thought that P. acnes strains in healthy controls may regulate TLR expression differently when compared to P. acnes strains in acne vulgaris patients

  1. 4.

    In allergic contact dermatitis (ACD), what is the predominant TLR involved in the pathophysiology of nickel allergy?

    1. A.

      TLR4

    2. B.

      TLR7

    3. C.

      TLR2

    4. D.

      TLR9

    5. E.

      None of the above

  • Correct answer: (A) Nickel, cobalt and palladium can bind and activate human TLR4s and activation of CHS. dependent on histidine residues that are specifically found in human TLR4, thus explaining why mice are naturally resistant to nickel-induced CHS

  1. 5.

    Why are mice genetically resistant to ACD to Nickel?

    1. A.

      Nickel does not penetrate mouse skin

    2. B.

      Their TLR are not activated by nickel

    3. C.

      Their Tregulatory cells suppress the response

    4. D.

      Mice have a high level of nickel in their diet

  • Correct answer: (B)-TLR4 in mice lacks the amino acid histidine in the extracellular domain. In humans, TLR4 normally expresses the amino acid histidine. TLR4 activation by nickel is dependent on histidine residues that are specifically found in human TLR4, thus explaining why mice are naturally resistant to nickel-induced CHS

  1. 6.

    How are TLRs involved in DNA repair?

    1. A.

      TLR sense DNA damage

    2. B.

      TLR activation directly induces a DNA repair response

    3. C.

      TLR activation triggers inflammation, which may stimulate DNA repair

    4. D.

      TLR7 agonists applied can increase DNA repair in the skin

    5. E.

      All of the above

    6. F.

      None of the above

  • Correct answer: (D)-TLR engagement may stimulate DNA repair by multiple mechanisms. This phenomenon is relevant to UV light exposure, and recovery of skin derived antigen presenting cells

  1. 7.

    Which of the following diseases is associated with impaired TLR signaling via TLR3?

    1. A.

      Discoid lupus

    2. B.

      Alopecia areata

    3. C.

      Psoriasis

    4. D.

      Xeroderma pigmentosa

  • Correct answer: (D)-XP patients NK cells are defective in IFN production in response to TLR3 stimulation

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shiu, J., Gaspari, A.A. (2017). Toll-Like Receptors. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics