Skip to main content

Photoimmunology

  • Chapter
  • First Online:
Clinical and Basic Immunodermatology

Abstract

Photoimmunology is the study of the effects of non-ionizing electromagnetic radiation (principally ultraviolet light) on the immune system. Ultraviolet (UV) light represents the spectrum of electromagnetic radiation between the wavelengths of 100 and 400 nm. Through its actions on the immune system, UV radiation promotes the development of skin cancers, modulates the development of allergic contact dermatitis, and triggers several specific photosensitivity disorders collectively known as the immunologically-mediated photodermatoses. These disorders include polymorphic light eruption, actinic prurigo, solar urticaria, hydro vacciniforme, and chronic actinic dermatitis. In addition to discussing the molecular underpinnings of UV-induced carcinogenesis and the effects of UV radiation on contact hypersensitivy responses, this chapter reviews the clinical features, epidemiology, pathophysiology and treatment of the immunologically-mediated photodermatoses. Additionally, this chapter highlights the key immunologic mechanisms by which UV radiation is used therapeutically to treat dermatologic diseases, especially T-cell mediated skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wondrak GT, Jacobson MK, Jacobson EL. Endogenous UVA-photosensitizers: mediators of skin photodamage and novel targets for skin photoprotection. Photochem Photobiol Sci. 2006;5(2):215–37.

    Article  CAS  PubMed  Google Scholar 

  2. Berneburg M, Krutmann J. Photoimmunology, DNA repair and photocarcinogenesis. J Photochem Photobiol B. 2000;54(2–3):87–93.

    Article  CAS  PubMed  Google Scholar 

  3. Black HS, et al. Photocarcinogenesis: an overview. J Photochem Photobiol B. 1997;40(1):29–47.

    Article  CAS  PubMed  Google Scholar 

  4. Sarasin A. The molecular pathways of ultraviolet-induced carcinogenesis. Mutat Res. 1999;428(1–2):5–10.

    Article  CAS  PubMed  Google Scholar 

  5. Urbach F, Forbes PD, Davies RE, Berger D. Cutaneous photobiology: past, present and future. J Invest Dermatol. 1976;67(1):209–24.

    Article  CAS  PubMed  Google Scholar 

  6. de Gruijl FR, et al. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice. Cancer Res. 1993;53(1):53–60.

    PubMed  Google Scholar 

  7. Sterenborg HJ, van der Leun JC. Tumorigenesis by a long wavelength UV-A source. Photochem Photobiol. 1990;51(3):325–30.

    Article  CAS  PubMed  Google Scholar 

  8. Longstreth J. Cutaneous malignant melanoma and ultraviolet radiation: a review. Cancer Metastasis Rev. 1988;7(4):321–33.

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong BK, Kricker A. The epidemiology of UV induced skin cancer. J Photochem Photobiol B. 2001;63(1–3):8–18.

    Article  CAS  PubMed  Google Scholar 

  10. Jhappan C, Noonan FP, Merlino G. Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 2003;22(30):3099–112.

    Article  CAS  PubMed  Google Scholar 

  11. Wang SQ, et al. Ultraviolet A and melanoma: a review. J Am Acad Dermatol. 2001;44(5):837–46.

    Article  CAS  PubMed  Google Scholar 

  12. Noonan FP, et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun. 2012;3:884.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hart RW, Setlow RB, Woodhead AD. Evidence that pyrimidine dimers in DNA can give rise to tumors. Proc Natl Acad Sci U S A. 1977;74(12):5574–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwarz A, et al. Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can suppress the effector phase of contact hypersensitivity. J Immunol. 2004;172(2):1036–43.

    Article  CAS  PubMed  Google Scholar 

  15. Elmets CA, et al. Analysis of the mechanism of unresponsiveness produced by haptens painted on skin exposed to low dose ultraviolet radiation. J Exp Med. 1983;158(3):781–94.

    Article  CAS  PubMed  Google Scholar 

  16. Matthews YJ, Halliday GM, Phan TA, Damian DL. Wavelength dependency for UVA-induced suppression of recall immunity in humans. J Dermatol Sci. 2010;59(3):192–7.

    Article  CAS  PubMed  Google Scholar 

  17. Halliday GM, et al. The suppression of immunity by ultraviolet radiation: UVA, nitric oxide and DNA damage. Photochem Photobiol Sci. 2004;3:736–40.

    Article  CAS  PubMed  Google Scholar 

  18. Vermeer M, Streilein JW. Ultraviolet B light-induced alterations in epidermal Langerhans cells are mediated in part by tumor necrosis factor-alpha. Photodermatol Photoimmunol Photomed. 1990;7(6):258–65.

    CAS  PubMed  Google Scholar 

  19. Yoshikawa T, Kurimoto I, Streilein JW. Tumour necrosis factor-alpha mediates ultraviolet light B enhanced expression of contact hypersensitivity. Immunology. 1992;76(2):264–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Simon JC, Cruz PD, Bergstresser PR, Tigelaar RE. Low dose ultraviolet B-irradiated Langerhans cells preferentially activate CD4+ cells of the T helper 2 subset. J Immunol. 1990;145:2087–91.

    CAS  PubMed  Google Scholar 

  21. Shreedhar V, Giese T, Sung VW, Ullrich SE. A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J Immunol. 1998;160(8):3783–9.

    CAS  PubMed  Google Scholar 

  22. Walterscheid JP, Ullrich SE, Nghiem DX. Platelet activating factor, a molecular sensor for cellular damage, activates systemic immune suppression. J Exp Med. 2002;195(2):171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marathe GK, et al. Ultraviolet B radiation generates platelet-activating factor-like phospholipids underlying cutaneous damage. J Biol Chem. 2005;280(42):35228–457.

    Article  Google Scholar 

  24. Moodycliffe AM, Kimber I, Norval M. The effect of ultraviolet B irradiation and urocanic acid isomers on dendritic cell migration. Immunology. 1992;77(3):394–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. El-Ghorr AA, Norval M. A monoclonal antibody to cis-urocanic acid prevents the ultraviolet-induced changes in Langerhans cells and delayed hypersensitivity responses in mice, although not preventing dendritic cell accumulation in lymph nodes draining the site of irradiation and contact hypersensitivity responses. J Invest Dermatol. 1995;105(2):264–8.

    Article  CAS  PubMed  Google Scholar 

  26. Walterscheid JP, et al. Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci U S A. 2006;103(46):17420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niizeki H, Alard P, Streilein JW. Calcitonin gene-related peptide is necessary for ultraviolet B-impaired induction of contact hypersensitivity. J Immunol. 1997;159:5183–6.

    CAS  PubMed  Google Scholar 

  28. Shreedhar VK, et al. Origin and characteristics of ultraviolet-B radiation-induced suppressor T lymphocytes. J Immunol. 1998;161(3):1327–35.

    CAS  PubMed  Google Scholar 

  29. Aberer W, et al. Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol. 1981;76(3):202–10.

    Article  CAS  PubMed  Google Scholar 

  30. Glass MJ, Bergstresser PR, Tigelaar RE, Streilein JW. UVB radiation and DNFB skin painting induce suppressor cells universally in mice. J Invest Dermatol. 1990;94(3):273–8.

    Article  CAS  PubMed  Google Scholar 

  31. Schwarz T, Beissert S. Milestones in photoimmunology. J Invest Dermatol. 2013;133(E1):E7–10.

    Article  PubMed  Google Scholar 

  32. Stein P, et al. UV exposure boosts transcutaneous immunization and improves tumor immunity: cytotoxic T-cell priming through the skin. J Invest Dermatol. 2011;131:211–9.

    Article  CAS  PubMed  Google Scholar 

  33. Fukunaga A, et al. Dermal dendritic cells, and not Langerhans cells, play an essential role in inducing an immune response. J Immunol. 2008;180:3057–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshiki R, et al. The mandatory role of IL-10 producing and OX40 ligand-expressing mature Langerhans cells in UVB-induced immunosuppression. J Immunol. 2010;184:5670–7.

    Article  CAS  PubMed  Google Scholar 

  35. Aragane Y, et al. Involvement of dectin-2 in ultraviolet radiation-induced tolerance. J Immunol. 2003;171(7):3801–7.

    Article  CAS  PubMed  Google Scholar 

  36. Schwarz T. Regulatory T cells induced by ultraviolet radiation. Int Arch Allergy Immunol. 2005;137(3):187–93.

    Article  PubMed  Google Scholar 

  37. Fukunaga A, et al. Langerhans cells serve as immunoregulatory cells by activating NKT cells. J Immunol. 2010;185(8):4633–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y-H, et al. Protective effects of green tea extracts on photoaging and photoimmunosuppression. Skin Res Tech. 2009;15:338–45.

    Article  Google Scholar 

  39. Hart PH, et al. Dermal mast cells determine susceptibility to ultraviolet B-induced systemic suppression of contact hypersensitivity responses in mice. J Exp Med. 1998;187(12):2045–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rauterberg A, Jung EG, Rauterberg EW. Complement deposits in epidermal cells after ultraviolet B exposure. Photodermatol Photoimmunol Photomed. 1993;9(4):135–43.

    CAS  PubMed  Google Scholar 

  41. Hammerberg C, Katiyar SK, Carroll MC, Cooper KD. Activated complement component 3 (C3) is required for ultraviolet induction of immunosuppression and antigenic tolerance. J Exp Med. 1998;187(7):1133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yoshida Y, et al. Monocyte induction of IL-10 and down-regulation of IL-12 by iC3b deposited in ultraviolet-exposed human skin. J Immunol. 1998;161(11):5873–9.

    CAS  PubMed  Google Scholar 

  43. Ullrich SE, Byrne SN. The immunologic revolution: photoimmunology. J Invest Dermatol. 2012;132:896–905.

    Article  CAS  PubMed  Google Scholar 

  44. Byrne SN, Sarchio SN. AMD3100 protects from UV-induced skin cancer. Oncoimmunology. 2014;3(1–3), e27562.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sarchio SN, et al. Pharmacologically antagonizing the CXCR4-CXCL12 Chemokine pathway with AMD3100 inhibits sunlight-induced skin cancer. J Invest Dermatol. 2013;134:1091–100.

    Article  PubMed  Google Scholar 

  46. Grimbaldeston MA, et al. Susceptibility to basal cell carcinoma is associated with high dermal mast cell prevalence in non-sun-exposed skin for an Australian population. Photochem Photobiol. 2003;78(6):633–9.

    Article  CAS  PubMed  Google Scholar 

  47. Grimbaldeston MA, et al. Association between melanoma and dermal mast cell prevalence in sun-unexposed skin. Br J Dermatol. 2004;150:895–903.

    Article  CAS  PubMed  Google Scholar 

  48. Byrne SN, Halliday GM. B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J Invest Dermatol. 2005;124:570–8.

    Article  CAS  PubMed  Google Scholar 

  49. Matsumura Y, et al. A role for inflammatory mediators in the induction of immunoregulatory B cells. J Immunol. 2006;177(7):4810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ponsonby A-L, Lucas RM, van der Mei IAF. UVR, vitamin D and three autoimmune diseases – multiple sclerosis, type I diabetes, rheumatoid arthritis. Photochem Photobiol. 2005;81(6):1267–75.

    Article  CAS  PubMed  Google Scholar 

  51. Breuer J, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75(5):739–58.

    Article  CAS  PubMed  Google Scholar 

  52. Tang JY, et al. Vitamin D in cutaneous carcinogenesis. J Am Acad Dermatol. 2012;67(5):817–26.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu PT, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–3.

    Article  CAS  PubMed  Google Scholar 

  54. Tokuda N, Levy RB. 1,25-dihydroxyvitamin D3 stimulates phagocytosis but suppresses HLA-DR and CD13 antigen expression in human mononuclear phagocytes. Proc Soc Exp Biol Med. 1996;211:244–50.

    Article  CAS  PubMed  Google Scholar 

  55. Mathieu C, et al. Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system. J Steroid Biochem Mol Biol. 2004;89–90:449–52.

    Article  PubMed  Google Scholar 

  56. Ferguson J. Diagnosis and treatment of the common idiopathic photodermatoses. Australas J Dermatol. 2003;44(2):90–6.

    Article  PubMed  Google Scholar 

  57. Ros AM, Wennersten G. Current aspects of polymorphous light eruptions in Sweden. Photodermatol. 1986;3(5):298–302.

    CAS  PubMed  Google Scholar 

  58. Chantorn R, Lim HW, Shwader TA. Photosensitivity disorders in children: part I. J Am Acad Dermatol. 2012;67(6):1093–110.

    Article  PubMed  Google Scholar 

  59. Tutrone WD, Spann CT, Scheinfeld N, DeLeo VA. Polymorphic light eruption. Dermatol Ther. 2003;16(1):28–39.

    Article  PubMed  Google Scholar 

  60. Boonstra HE, van Weelden H, Toonstra J, van Vloten WA. Polymorphous light eruption: a clinical, photobiologic, and follow-up study of 110 patients. J Am Acad Dermatol. 2000;42(2 pt 1):199–207.

    Article  CAS  PubMed  Google Scholar 

  61. Lava SA, et al. Juvenile spring eruption: an outbreak report and systematic review of the literature. Br J Dermatol. 2013;168:1066–72.

    Article  CAS  PubMed  Google Scholar 

  62. Lecha M. Idiopathic photodermatoses: clinical, diagnostic and therapeutic aspects. J Eur Acad Dermatol Venereol. 2001;15(6):499–504.

    Article  CAS  PubMed  Google Scholar 

  63. Norris PG, et al. Polymorphic light eruption: an immunopathological study of evolving lesions. Br J Dermatol. 1989;120(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  64. Kolgen W, et al. CD11b+ cells and ultraviolet-B-resistant CD1a+ cells in skin of patients with polymorphous light eruption. J Invest Dermatol. 1999;113(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  65. Wackernagel A, et al. Langerhans cell resistance, CD11b+ cell influx, and cytokine mRNA expression in skin after UV exposure in patients with polymorphous light eruption as compared with healthy control subjects. J Invest Dermatol. 2004;122(5):1342–4.

    Article  PubMed  Google Scholar 

  66. Kolgen W, et al. Differential expression of cytokines in UV-B-exposed skin of patients with polymorphous light eruption: correlation with Langerhans cell migration and immunosuppression. Arch Dermatol. 2004;140(3):295–302.

    Article  PubMed  Google Scholar 

  67. Gambichler T, et al. T regulatory cells and related immunoregulatory factors in polymorphic light eruption following ultraviolet A1 challenge. Br J Dermatol. 2013;169:1288–94.

    Article  CAS  PubMed  Google Scholar 

  68. Ross G, Foley P, Baker C. Actinic prurigo. Photodermatol Photoimmunol Photomed. 2008;24(5):272–5.

    Article  PubMed  Google Scholar 

  69. Grabczynska SA, et al. Actinic prurigo and polymorphic light eruption: common pathogenesis and the importance of HLA-DR/DRB1*0407. Br J Dermatol. 1999;140(2):232–6.

    Article  CAS  PubMed  Google Scholar 

  70. Sheridan DP, et al. HLA typing in actinic prurigo. J Am Acad Dermatol. 1990;22(6 Pt 1):1019–23.

    Article  CAS  PubMed  Google Scholar 

  71. Dawe RS, Collins P, Ferguson J, O’Sullivan A. Actinic prurigo and HLA-DR4. J Invest Dermatol. 1997;108:233–4.

    Article  CAS  PubMed  Google Scholar 

  72. Crouch R, Foley P, Baker C. Actinic prurigo: a retrospective analysis of 21 cases referred to an Australian photobiology clinic. Australas J Dermatol. 2002;43:128–32.

    Article  PubMed  Google Scholar 

  73. Botto NC, Warshaw EM. Solar urticaria. J Am Acad Dermatol. 2008;59:909–20.

    Article  PubMed  Google Scholar 

  74. Mekkes JR, de Vries HJ, Kammeyer A. Solar urticaria induced by infrared radiation. Clin Exp Dermatol. 2003;28:222–3.

    Article  CAS  PubMed  Google Scholar 

  75. Horio T. Solar urticaria-idiopathic? Photodermatol Photoimmunol Photomed. 2003;19(3):147–54.

    Article  PubMed  Google Scholar 

  76. Gupta G, Man I, Kemmett D. Hydroa vacciniforme: a clinical and follow-up study of 17 cases. J Am Acad Dermatol. 2000;42(2 pt 1):208–13.

    Article  CAS  PubMed  Google Scholar 

  77. Varughese N, Petrella T, Singer M, Carlson JA. Plasmacytoid (CD68+ CD123+) monocytes may play a crucial role in the pathogenesis of hydroa vacciniforme: a case report. Am J Dermatopathol. 2009;31:828–33.

    Article  PubMed  Google Scholar 

  78. Hirai Y, et al. Hydroa vacciniforme is associated with increased numbers of Epstein-Barr virus-infected gdT cells. J Invest Dermatol. 2012;132:1401–8.

    Article  CAS  PubMed  Google Scholar 

  79. Yap LM, Foley P, Crouch R, Baker C. Chronic actinic dermatitis: a retrospective analysis of 44 cases referred to an Australian photobiology clinic. Australas J Dermatol. 2003;44:256–62.

    Article  PubMed  Google Scholar 

  80. Trakatelli M, et al. Photodermatoses with onset in the elderly. Br J Dermatol. 2009;161 Suppl 3:69–77.

    Article  PubMed  Google Scholar 

  81. Dawe RS, Ferguson J. Diagnosis and treatment of chronic actinic dermatitis. Dermatol Ther. 2003;16:45–51.

    Article  PubMed  Google Scholar 

  82. Honigsmann H. Mechanisms of phototherapy and photochemistry for photodermatoses. Dermatol Ther. 2003;16(1):23–7.

    Article  PubMed  Google Scholar 

  83. Chew A-L, et al. Contact and photocontact sensitization in chronic actinic dermatitis: a changing picture. Contact Dermatitis. 2010;62:42–6.

    Article  CAS  PubMed  Google Scholar 

  84. Wolverton JE, Soter NA, Cohen DE. The natural history of chronic actinic dermatitis: an analysis at a single institution in the United States. Dermatitis. 2014;25(1):27–31.

    Article  PubMed  Google Scholar 

  85. Tartar D, et al. Update on the immunological mechanism of action behind phototherapy. J Drugs Dermatol. 2014;13(5):564–8.

    CAS  PubMed  Google Scholar 

  86. Weichenthal M, Schwarz T. Phototherapy: how does UV work? Photodermatol Photoimmunol Photomed. 2005;21(5):260–6.

    Article  CAS  PubMed  Google Scholar 

  87. Stern RS, Nichols KT, Vakeva LH. Malignant melanoma in patients treated for psoriasis with methoxsalen (psoralen) and ultraviolet A radiation (PUVA) The PUVA Follow-up Study. N Engl J Med. 1997;336(15):1041–5.

    Article  CAS  PubMed  Google Scholar 

  88. Breuer-McHam J, et al. Activation of HIV in human skin by ultraviolet B radiation and its inhibition by NFkB blocking agents. Photochem Photobiol. 2001;74:805–10.

    Article  CAS  PubMed  Google Scholar 

  89. McDonald H, Cruz PD. Phototherapy and HIV infection. In: Krutmann J, editor. Dermatological phototherapy and photodiagnostic methods. 2nd ed. Heidelberg: Springer; 2007.

    Google Scholar 

  90. Menon K, et al. Psoriasis in patients with HIV infection: from the Medical Board of the National Psoriasis Foundation. J Am Acad Dermatol. 2010;62:291–9.

    Article  PubMed  Google Scholar 

  91. Gambichler T, Terras S, Kreuter A. Treatment regimens, protocols, dosage and indications for UVA1 phototherapy: facts and controversies. Clin Dermatol. 2013;31:438–54.

    Article  PubMed  Google Scholar 

  92. Bulat V, et al. The mechanisms of action of phototherapy in the treatment of the most common photodermatoses. Coll Antropol. 2011;35 Suppl 2:147–51.

    PubMed  Google Scholar 

  93. Dupont E, Craciun L. UV-induced immunosuppressive and anti-inflammatory actions: mechanisms and clinical applications. Immunotherapy. 2009;1(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  94. Korbelik M. Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg. 1996;14(5):329–34.

    CAS  PubMed  Google Scholar 

  95. Erceg A, de Jong EMJG, van de Kerkhof PCM. The efficacy of pulsed dye laser treatment for inflammatory skin diseases: a systematic review. J Am Acad Dermatol. 2013;69:609–15.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to thank the previous authors of this chapter, Christopher Hansen, Justin J. Leitenberger, and Heidi T. Jacobe, whose contributions established a strong foundation and formed the basis for the organization of this update.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jake E. Turrentine MD .

Editor information

Editors and Affiliations

Questions

Questions

  1. 1.

    Which of the following wavelengths of light correctly describes the UVA1 spectrum?

    1. A.

      200–290 nm

    2. B.

      290–320 nm

    3. C.

      320–340 nm

    4. D.

      340–400 nm

    5. E.

      400–800 nm

  2. 2.

    Which of the following cytokines is critical to UV-induced immunosuppression?

    1. A.

      IL-1

    2. B.

      IL-5

    3. C.

      IL-10

    4. D.

      TGF-beta

    5. E.

      Interferon-alpha

  3. 3.

    Phototesting of patients with polymorphic light eruption is most likely to demonstrate which of the following findings?

    1. A.

      Decreased MED-A and decreased MED-B

    2. B.

      Decreased MED-A and normal MED-B

    3. C.

      Normal MED-A and decreased MED-B

    4. D.

      Normal MED-A and normal MED-B

    5. E.

      Vesiculation and scarring in response to UVA exposure

  4. 4.

    Patch test positivity to para-pheylenediamene (PPD) is most likely in patients with which of the following immunologically medicated photodermatoses?

    1. A.

      Actinic Prurigo

    2. B.

      Chronic Actinic Dermatitis

    3. C.

      Hydroa Vacciniforme

    4. D.

      Polymorphic Light Eruption

    5. E.

      Solar Urticaria

  5. 5.

    Which of the following presentations is characteristic of actinic prurigo?

    1. A.

      A 5 year old boy with itchy papules and excoriations on the face and neck, conjunctivitis, and cheilitis lasting throughout the year

    2. B.

      An 8 year old boy with recurrent vesicles on the cheeks that umbilicate and heal with pox-like scars

    3. C.

      A 10 year old boy with itchy papules on the ears for 1–2 weeks every spring

    4. D.

      A 24 year old woman with itchy papules on the forearms for 1–2 weeks every spring

    5. E.

      A 60 year old man with itchy lichenified plaques on the hands, face, and neck

Answers

  1. 1.

    D

  2. 2.

    C

  3. 3.

    D

  4. 4.

    B

  5. 5.

    A

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Turrentine, J.E., Cruz, P.D. (2017). Photoimmunology. In: Gaspari, A., Tyring, S., Kaplan, D. (eds) Clinical and Basic Immunodermatology. Springer, Cham. https://doi.org/10.1007/978-3-319-29785-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29785-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29783-5

  • Online ISBN: 978-3-319-29785-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics